Trigonometrical Equations
normal

$[0,4\pi ]$ માં સમીકરણ  $(s)$ of the equation $\left( {1 - \frac{1}{{2\,\sin x}}} \right){\cos ^2}\,2x\, = \,2\,\sin x\, - \,3\, + \,\frac{1}{{\sin x}}$  ના કેટલા ઉકેલો મળે ?

A

$0$

B

$2$

C

$4$

D

more than $4$

Solution

$\left(\frac{2 \sin x-1}{2 \sin x}\right) \cos ^{2} 2 x =\frac{2 \sin ^{2} x-3 \sin x+1}{\sin x} $ 

$=\frac{(2 \sin x-1)(\sin x-1)}{\sin x} $ 

$ \Rightarrow \mathop {\mathop {\sin x = \frac{1}{2}}\limits_ \Downarrow  }\limits_{4\,solutions} {\rm{ }}\,\,\,\,\,{\rm{or }}\,\,\,\,\mathop {\mathop {\,\frac{1}{2}{{\cos }^2}2x}\limits_{ \ge 0}  = \mathop {\sin x – 1}\limits_{ \le 0} }\limits_{{\rm{Hence no solution }}} $

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.