- Home
- Standard 11
- Mathematics
Trigonometrical Equations
normal
$[0,4\pi ]$ માં સમીકરણ $(s)$ of the equation $\left( {1 - \frac{1}{{2\,\sin x}}} \right){\cos ^2}\,2x\, = \,2\,\sin x\, - \,3\, + \,\frac{1}{{\sin x}}$ ના કેટલા ઉકેલો મળે ?
A
$0$
B
$2$
C
$4$
D
more than $4$
Solution
$\left(\frac{2 \sin x-1}{2 \sin x}\right) \cos ^{2} 2 x =\frac{2 \sin ^{2} x-3 \sin x+1}{\sin x} $
$=\frac{(2 \sin x-1)(\sin x-1)}{\sin x} $
$ \Rightarrow \mathop {\mathop {\sin x = \frac{1}{2}}\limits_ \Downarrow }\limits_{4\,solutions} {\rm{ }}\,\,\,\,\,{\rm{or }}\,\,\,\,\mathop {\mathop {\,\frac{1}{2}{{\cos }^2}2x}\limits_{ \ge 0} = \mathop {\sin x – 1}\limits_{ \le 0} }\limits_{{\rm{Hence no solution }}} $
Standard 11
Mathematics