The opposite angular points of a square are $(3,\;4)$ and $(1,\; - \;1)$. Then the co-ordinates of other two points are
$D\,\left( {\frac{1}{2},\,\,\frac{9}{2}} \right)\,,\,\,B\,\left( { - \frac{1}{2},\,\,\frac{5}{2}} \right)$
$D\,\left( {\frac{1}{2},\,\,\frac{9}{2}} \right)\,,\,\,B\,\left( {\frac{1}{2},\,\,\frac{5}{2}} \right)$
$D\,\left( {\frac{9}{2},\,\,\frac{1}{2}} \right)\,,\,\,B\,\left( { - \frac{1}{2},\,\,\frac{5}{2}} \right)$
None of these
Two sides of a rhombus are along the lines, $x -y+ 1 = 0$ and $7x-y-5 =0.$ If its diagonals intersect at $(-1,-2),$ then which one of the following is a vertex of this rhombus?
If in a parallelogram $ABDC$, the coordinates of $A, B$ and $C$ are respectively $(1, 2), (3, 4)$ and $(2, 5)$, then the equation of the diagonal $AD$ is
The equation of the lines on which the perpendiculars from the origin make ${30^o}$ angle with $x$-axis and which form a triangle of area $\frac{{50}}{{\sqrt 3 }}$ with axes, are
In a triangle $ABC$, coordianates of $A$ are $(1, 2)$ and the equations of the medians through $B$ and $C$ are $x + y = 5$ and $x = 4$ respectively. Then area of $\Delta ABC$ (in sq. units) is
A line $L$ passes through the points $(1, 1)$ and $(2, 0)$ and another line $L'$ passes through $\left( {\frac{1}{2},0} \right)$ and perpendicular to $L$. Then the area of the triangle formed by the lines $L,L'$ and $y$- axis, is