रेखाओं $xy = 0$ व $x + y = 1$ द्वारा बने त्रिभुज का लम्बकेन्द्र है
$(0,0)$
$\left( {\frac{1}{2},\frac{1}{2}} \right)$
$\left( {\frac{1}{3},\frac{1}{3}} \right)$
$\left( {\frac{1}{4},\frac{1}{4}} \right)$
शीर्षों $A (2,3), B (4,-1)$ और $C (1,2)$ वाले त्रिभुज $ABC$ के शीर्ष $A$ से उसकी संमुख भुजा पर लंब डाला गया है। लंब की लंबाई तथा समीकरण ज्ञात कीजिए।
यदि रेखा $3 x +4 y -24=0, x$-अक्ष को बिन्दु $A$ तथा $y$-अक्ष को बिन्दु $B$ पर काटती है, तो त्रिभुज $OAB$, जहाँ $O$ मूलबिन्दु है, का अन्तः केन्द्र है
एक समांतर चतुर्भुज की दो भुजाएँ रेखाओं $4 x+5 y=0$ तथा $7 x +2 y =0$ के अनुदिश है। यदि इस समांतर चतुर्भुज के एक विकर्ण का समीकरण $11 x+7 y=9$ है, तो दूसरा विकर्ण निम्न में से किस बिंदु से होकर जाता है?
माना एक समांतर चतुर्भुज की दो संलग्न भुजाओं के समीकरण $2 x-3 y=-23$ तथा $5 x+4 y=23$ हैं। यदि इसके एक विकर्ण $\mathrm{AC}$ का समीकरण $3 x+7 y=23$ है तथा $A$ की दूसरे विकर्ण से दूरी $d$ है, तो $50 \mathrm{~d}^2$ बराबर है:
किसी समान्तर चतुभुज की दो आस भुजायें $4x + 5y = 0$ व $7x + 2y = 0$ हैं। यदि एक विकर्ण का समीकरण $11x + 7y = 9$ हो, तो दूसरे विकर्ण का समीकरण है