The parameter on which the value of the determinant $\left| {\,\begin{array}{*{20}{c}}1&a&{{a^2}}\\{\cos (p - d)x}&{\cos px}&{\cos (p + d)x}\\{\sin (p - d)x}&{\sin px}&{\sin (p + d)x}\end{array}\,} \right|$ does not depend upon
$a$
$p$
$d$
$x$
If $A$ and $B$ are $3 × 3$ matrices and $| A | \ne 0$, then which of the following are true?
The value of the determinant $\left| {\,\begin{array}{*{20}{c}}0&{{b^3} - {a^3}}&{{c^3} - {a^3}}\\{{a^3} - {b^3}}&0&{{c^3} - {b^3}}\\{{a^3} - {c^3}}&{{b^3} - {c^3}}&0\end{array}\,} \right|$ is equal to
If $a,b,c$ are positive integers, then the determinant $\Delta = \left| {\,\begin{array}{*{20}{c}}{{a^2} + x}&{ab}&{ac}\\{ab}&{{b^2} + x}&{bc}\\{ac}&{bc}&{{c^2} + x}\end{array}\,} \right|$ is divisible by
The value of $\theta$ lying between $\theta = 0$ and $\theta = \pi /2$ and satisfying the equation : $\left| {\,\begin{array}{*{20}{c}} {1\,\, + \,\,{{\sin }^2}\,\theta }&{{{\cos }^2}\,\theta }&{4\,\sin \,4\,\theta }\\ {{{\sin }^2}\,\theta }&{1\,\, + \,\,{{\cos }^2}\,\theta }&{4\,\sin \,4\,\theta }\\ {{{\sin }^2}\,\theta }&{{{\cos }^2}\,\theta }&{1\,\, + \,\,4\,\sin \,4\,\theta } \end{array}\,} \right|$ $= 0$ are :
Let $\beta$ be a real number. Consider the matrix
$A=\left(\begin{array}{ccc}\beta & 0 & 1 \\ 2 & 1 & -2 \\ 3 & 1 & -2\end{array}\right)$
If $A^7-(\beta-1) A^6-\beta A^5$ is a singular matrix, then the value of $9 \beta$ is