3 and 4 .Determinants and Matrices
medium

 $\left| {\,\begin{array}{*{20}{c}}1&a&{{a^2}}\\{\cos (p - d)x}&{\cos px}&{\cos (p + d)x}\\{\sin (p - d)x}&{\sin px}&{\sin (p + d)x}\end{array}\,} \right|$ ની કિમંત . . .  પર આધારિત નથી.

A

$a$

B

$p$

C

$d$

D

$x$

(IIT-1997)

Solution

(b) ${C_1} \to {C_1} + {C_3} – 2{C_2}$ $\cos dx$ gives
$\Delta = \left| {\,\begin{array}{*{20}{c}}{1 + {a^2} – 2a\cos dx}&a&{{a^2}}\\0&{\cos px}&{\cos (p + d)x}\\0&{\sin px}&{\sin (p + d)x}\end{array}\,} \right|$
=$(1 + {a^2} – 2a\cos dx)\sin dx$, (which is independent of $p$).

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.