$g$ ના માપનમાં પ્રતિશત ત્રુટિ $.....\%$ હોય
(આપેલ : $g =\frac{4 \pi^2 L }{ T ^2}, L =(10 \pm 0.1) \,cm$, $T =(100 \pm 1)\,s )$
$2$
$5$
$3$
$7$
આપણે અવ્યવસ્થિત ત્રુટિ ને શેના દ્વારા ધટાડી શકીએ છીએ?
જો $\theta _1= 25.5 \pm 0.1\,^oC$ અને ${\theta _2} = 35.3 \pm 0.1{{\mkern 1mu} ^o}C$ હોય, તો ${\theta _1}\, - \,{\theta _2}$ શોધો.
સાદા લોલકના પ્રયોગમાં લોલકનો આવર્તકાળ $T=2 \pi \sqrt{\frac{l}{g}}$ પરથી માપવામાં આવે છે. જો આવર્તકાળ અને લંબાઈના માપનમાં મહત્તમ પ્રતિશત ત્રુટિ અનુક્રમે $2 \% $ અને $ 2 \% $ હોય, તો $g$ ના માપનમાં મળતી મહત્તમ પ્રતિશત ત્રુટિ ......... $\%$ હોય.
પદાર્થનું સ્થાનાંતર $(13.8 \pm 0.2) m$ અને લાગતો સમય $(4.0 \pm 0.3) s$ હોય,તો વેગમાં પ્રતિશત ત્રુટિ ......... $\%$ હોવી જોઈએ.
નળાકારની લંબાઇ $0.1\, cm$ લઘુતમ માપશકિત ધરાવતા સાધનથી માપતા $5 \,cm$ મળે છે,અને $0.01\,cm$ લઘુતમ માપશકિત ધરાવતા સાધનથી ત્રિજયા માપતા $2.0 \,cm$ મળે છે,તો નળાકારના કદમાં પ્રતિશત ત્રુટિ ......... $\%$ થાય.