$g$ ના માપનમાં પ્રતિશત ત્રુટિ $.....\%$ હોય
(આપેલ : $g =\frac{4 \pi^2 L }{ T ^2}, L =(10 \pm 0.1) \,cm$, $T =(100 \pm 1)\,s )$
$2$
$5$
$3$
$7$
ત્રુટિઓના સરવાળા કે તફાવતના કારણે અંતિમ પરિણામ ઉપર કેવી અસર થાય છે તે સમજાવો.
પ્રાયોગિક રીતે માપેલ રાશિઓ $a, b$ અને $c $ અને $X$ ને $X = ab^2/C^3$ સૂત્રથી દર્શાવવામાં આવે છે. જો $a, b $ અને $c $ ની પ્રતિશત ત્રુટિ અનુક્રમે $\pm 1\%, 3\% $ અને $2\%$ હોય તો $X$ ની પ્રતિશત ત્રુટિ કેટલી હશે ?
એક વિદ્યાર્થી આપેલા સમયમાં શરૂઆતમાં સ્થિર રહેલા પદાર્થના મુક્ત પતન દરમિયાન કાપેલા અંતરને માપે છે. તે આ માહિતીનો ઉપયોગ કરીને $g$, ગુરુત્વાકર્ષણના પ્રવેગનો અંદાજ કાઢે છે. જો અંતર અને સમયના માપનમાં મહત્તમ પ્રતિશત ત્રુટિ અનુક્રમે $e_1$ અને $e_2$ હોય, તો $g$ ના અંદાજમાં પ્રતિશત ત્રુટિ કેટલી હશે?
જો $\theta _1= 25.5 \pm 0.1\,^oC$ અને ${\theta _2} = 35.3 \pm 0.1{{\mkern 1mu} ^o}C$ હોય, તો ${\theta _1}\, - \,{\theta _2}$ શોધો.
એક બ્રીજની નીચે વહેતી નદીના પાણીમાં પથ્થર ને મુકતપતન આપીને બ્રીજની ઊંચાઇ માપવાનાં પ્રયોગમાં સમયના માપનમાં $2$ સૅકન્ડને અંતે $0.1\,s$ ની ત્રુટિ ઉદભવે છે. તો આ બ્રીજની ઊંચાઈના માપનમાં ઉદભવતી ત્રુટિ આશરે …… $m$ હોય.