वृत्तों ${x^2} + {y^2} = 25$ तथा ${x^2} + {y^2} - 8x + 7 = 0$ के प्रतिच्छेद बिन्दु हैं
$(4, 3)$ तथा $(4, -3)$
$(4, -3)$ तथा $(-4, -3)$
$(-4, 3)$ तथा $(4, 3)$
$(4, 3)$ तथा $(3, 4)$
यदि दो वृत्त ${(x - 1)^2} + {(y - 3)^2} = {r^2}$ तथा ${x^2} + {y^2} - 8x + 2y + 8 = 0$ दो भिन्न - भिन्न बिन्दुओं पर प्रतिच्छेद करते हों, तो
यदि वृत्त ${x^2} + {y^2} + 6x - 2y + k = 0$ वृत्त ${x^2} + {y^2} + 2x - 6y - 15 = 0$ की परिधि को समद्विभाजित करता है, तो $k$ का मान है
दो वृत्तों ${x^2} + {y^2} = 4$ व ${x^2} - {y^2} - 8x + 12 = 0$ की उभयनिष्ठ स्पर्शियों की संख्या है
माना सबसे बड़े तथा सबसे छोटे वत्तों, जो बिन्दु $(-4,1)$ से होकर जाते हैं तथा जिनके केन्द्र, वत्त $x^{2}+y^{2}+2 x+4 y-4=0$ की परिधि पर स्थित हैं, की त्रिज्याएँ क्रमशः $I _{1}$ तथा $I _{2}$ हैं। यदि $\frac{I_{1}}{I_{2}}=a+b \sqrt{2}$ है, तो $a+b$ बराबर है