- Home
- Standard 11
- Mathematics
4-2.Quadratic Equations and Inequations
normal
बहुपद समीकरण $x^3-3 a x^2+\left(27 a^2+9\right) x+2016=0$ का
A
वास्तविक $a$ के लिए केवल एक वास्तविक मूल संभव है.
B
वास्तविक $a$ के लिए तीन वास्तविक मूल संभव हैं.
C
$a \geq 0$ के लिए तीन वास्तनिक मूल एवं $a < 0$ के लिए केवल एक वास्तविक मूल संभव है.
D
$a \leq 0$ के लिए तीन बास्तविक मूल एवं $a > 0$ के लिए केवल एक बास्तविक मूल संभव है.
(KVPY-2016)
Solution
(a)
We have,
$x^3-3 a x^2+\left(27 a^2+9\right) x+2016=0$
Let
$f(x) =x^3-3 a x^2+\left(27 a^2+9\right) x+2016$
$f^{\prime}(x) =3 x^2-6 a x+27 a^2+9$
$f^{\prime}(x) =3\left(x^2-2 a x+9 a^2+3\right)$
$f^{\prime}(x) =3\left((x-a)^2+8 a^2+3\right)$
$f^{\prime}(x) > 0, \forall x \in R$
$\therefore(x) \text { is increasing function, } \forall a \in R$.
$f(x)$ has exactly one real root for any real $\varepsilon$.
Standard 11
Mathematics