Gujarati
4-2.Quadratic Equations and Inequations
normal

बहुपद समीकरण $x^3-3 a x^2+\left(27 a^2+9\right) x+2016=0$ का

A

वास्तविक $a$ के लिए केवल एक वास्तविक मूल संभव है.

B

वास्तविक $a$ के लिए तीन वास्तविक मूल संभव हैं.

C

$a \geq 0$ के लिए तीन वास्तनिक मूल एवं $a < 0$ के लिए केवल एक वास्तविक मूल संभव है.

D

$a \leq 0$ के लिए तीन बास्तविक मूल एवं $a > 0$ के लिए केवल एक बास्तविक मूल संभव है.

(KVPY-2016)

Solution

(a)

We have,

$x^3-3 a x^2+\left(27 a^2+9\right) x+2016=0$

Let

$f(x) =x^3-3 a x^2+\left(27 a^2+9\right) x+2016$

$f^{\prime}(x) =3 x^2-6 a x+27 a^2+9$

$f^{\prime}(x) =3\left(x^2-2 a x+9 a^2+3\right)$

$f^{\prime}(x) =3\left((x-a)^2+8 a^2+3\right)$

$f^{\prime}(x) > 0, \forall x \in R$

$\therefore(x) \text { is increasing function, } \forall a \in R$.

$f(x)$ has exactly one real root for any real $\varepsilon$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.