The position of a particle at time $t$ is given by the relation $x(t) = \left( {\frac{{{v_0}}}{\alpha }} \right)\,\,(1 - {e^{ - \alpha t}})$, where ${v_0}$ is a constant and $\alpha > 0$. The dimensions of ${v_0}$ and $\alpha $ are respectively
${M^0}{L^1}{T^{ - 1}}$ and ${T^{ - 1}}$
${M^0}{L^1}{T^0}$ and ${T^{ - 1}}$
${M^0}{L^1}{T^{ - 1}}$ and $L{T^{ - 2}}$
${M^0}{L^1}{T^{ - 1}}$ and $T$
The amount of heat energy $Q$, used to heat up a substance depends on its mass $m$, its specific heat capacity $(s)$ and the change in temperature $\Delta T$ of the substance. Using dimensional method, find the expression for $s$ is (Given that $\left.[s]=\left[ L ^2 T ^{-2} K ^{-1}\right]\right)$ is
A dimensionally consistent relation for the volume $V$ of a liquid of coefficient of viscosity $\eta $ flowing per second through a tube of radius $r$ and length $l$ and having a pressure difference $p$ across its end, is
Write the dimensions of $a/b$ in the relation $P = \frac{{a - {t^2}}}{{bx}}$ , where $P$ is pressure, $x$ is the distance and $t$ is the time
If energy $(E)$, velocity $(v)$and force $(F)$ be taken as fundamental quantity, then what are the dimensions of mass
The dimensions of Stefan-Boltzmann's constant $\sigma$ can be written in terms of Planck's constant $h$, Boltzmann's constant $k_B$ and the speed of light $c$ as $\sigma=h^\alpha k_B^\beta c^\gamma$. Here,