किसी कण की समय $t$ पर स्थिति निम्न प्रकार दी गयी है $x(t) = \left( {\frac{{{v_0}}}{\alpha }} \right)\;(1 - {c^{ - \alpha \,t}})$, जहाँ ${v_0}$ एक नियतांक तथा $\alpha > 0,$ ${v_0}$ व $\alpha $ की विमायें क्रमश: हैं

  • A

    ${M^0}{L^1}{T^{ - 1}}$ व ${T^{ - 1}}$

  • B

    ${M^0}{L^1}{T^0}$ व ${T^{ - 1}}$

  • C

    ${M^0}{L^1}{T^{ - 1}}$ व $L{T^{ - 2}}$

  • D

    ${M^0}{L^1}{T^{ - 1}}$ व $T$

Similar Questions

यदि द्रव्यमान को $\mathrm{m}=\mathrm{k} \mathrm{c}^{\mathrm{p}} \mathrm{G}^{-1 / 2} \mathrm{~h}^{1 / 2}$ लिखा गया हो तो $\mathrm{P}$ मान होगा: (जब नियतांक अपना सामान्य अर्थ दर्शाते है तथा $\mathrm{k}$ एक विमाविहीन नियतांक है)

  • [JEE MAIN 2024]

$A, B, C$ तथा $D$ चार भिन्न मात्राएँ हैं जिनकी विमाएं भिन्न हैं। कोई भी मात्रा विमा-रहित मात्रा नहीं हैं, लेकिन $A D=C \ln (B D)$ सत्य है। तब निम्न में से कौन आशय-रहित मात्रा है ?

  • [JEE MAIN 2016]

यंग - लाप्लास के नियमानुसार $R$ त्रिज्या वाले साबुन के बुलबुले के अंदर आंतरिक दाब निम्नलिखित समीकरण द्वारा दिया जाता है : $\triangle P=4 \sigma / R$, जहाँ $\sigma$ साबून का पृष्ठ तनाव स्थिरांक है। एतवोस संख्या (Eotvos number) $E_o$ एक विमाहीन (dimensionless) संख्या है जो द्रव की सतह पर उभरे हुए साबुन के बुलबुले के आकार का वर्णन करता है। यह गुरुत्वीय त्वरण $(g)$, घनत्व $(\rho)$ और लाक्षणिक लंबाई (characteristic length) $L$, जो कि बुलबुले की त्रिज्या भी हो सकती है, के द्वारा निरूपित किया जाता है। $E_o$ का एक संभावित व्यंजक है

  • [KVPY 2013]

कोहरे की स्थिति में वह दूरी $d$, जहाँ से सिग्नल स्पष्ट रूप से दिखाई दे, जानने के लिए एक रेलवे इंजीनियर विमीय विश्लेषण का प्रयोग करता है। उसके अनुसार यह दूरी $d$ कोहरे के द्रव्यमान घनत्व $\rho$ सिग्नल के प्रकाश की तीव्रता $S$ (शक्ति/क्षेत्रफल) तथा उसकी आवृत्ति $f$ पर निर्भर है। यदि इंजीनियर $d$ को $S ^{1 / n}$ के समानुपाती पाता है, तब $n$ का मान है :

  • [IIT 2014]

राशि $X = \frac{{{\varepsilon _0}LV}}{t},$ में ${\varepsilon _0}$ मुक्त आकाश की विद्युतशीलता, $L$ लम्बाई, $V$ विभवान्तर और $t$ समय है, तो $X$ की विमायें समान है

  • [IIT 2001]