किसी कण की समय $t$ पर स्थिति निम्न प्रकार दी गयी है $x(t) = \left( {\frac{{{v_0}}}{\alpha }} \right)\;(1 - {c^{ - \alpha \,t}})$, जहाँ ${v_0}$ एक नियतांक तथा $\alpha > 0,$ ${v_0}$ व $\alpha $ की विमायें क्रमश: हैं

  • A

    ${M^0}{L^1}{T^{ - 1}}$ व ${T^{ - 1}}$

  • B

    ${M^0}{L^1}{T^0}$ व ${T^{ - 1}}$

  • C

    ${M^0}{L^1}{T^{ - 1}}$ व $L{T^{ - 2}}$

  • D

    ${M^0}{L^1}{T^{ - 1}}$ व $T$

Similar Questions

यदि गति $( V )$, त्वरण $( A )$ तथा बल $( F )$ को मूल भौतिक इकाइयाँ मानें तो, यंग प्रत्यास्थता गुणांक की विमा होगी।

  • [JEE MAIN 2019]

एक विमाहीन राशि $P$ के लिये व्यंजक $P =\frac{\alpha}{\beta} \log _{ e }\left(\frac{ kt }{\beta x }\right)$ द्वारा दिया जाता है, जहाँ $\alpha$ तथा $\beta$ नियतांक है, $x$ दूरी एवं $k$ बोल्ट्जमान नियतांक है तथा $t$ तापमान है, तो राशि $\alpha$ की विमाएँ होगी :

  • [JEE MAIN 2022]

यदि एक साईकिल चालक वृत्ताकार पथ पर गति करते समय ऊध्र्वाधर से $\theta $ कोण से झुक जाता है, तब $\theta $ का मान सूत्र $\tan \theta = \frac{{rg}}{{{v^2}}}$ (जहाँ संकेतों के सामान्य अर्थ हैं) द्वारा प्राप्त किया जाता है। यह सूत्र

यदि वेग $[ V ]$, समय $[ T ]$ तथा बल $[ F ]$ मूल राशियां मानी जाएं, तो द्रव्यमान की विमा होगी।

  • [JEE MAIN 2021]

किसी पदार्थ का घनत्व $CGS$ ( सी.जी.एस.) प्रणाली मे $4 g / cm ^{3}$ है, तो ऐसी प्रणाली में, जहाँ लम्बाई का मात्रक $10\, cm$ और द्रव्यमान का मात्रक $100\, g$ है, घनत्व का मात्रक होगा

  • [AIPMT 2011]