$xy$ तल में गति करते हुए कण की $t$ समय पर स्थिति निम्नलिखित सम्बन्धों से व्यक्त की जाती है $x = (3{t^2} - 6t)$ मीटर, $y = ({t^2} - 2t)$ मीटर। गतिशील कण के लिए निम्नलिखित में से सही कथन का चयन कीजिये
कण का त्वरण $t = 0$ सैकण्ड पर शून्य होगा
कण का वेग $t = 0$ सैकण्ड पर शून्य होगा
कण का वेग $t = 1$ सैकण्ड पर शून्य होगा
कण का वेग तथा त्वरण कभी भी शून्य नहीं होगा
किसी बड़े व खुले हुए स्थान पर किसी कण का यात्रा पथ चित्र में प्रदर्शित है। कण की स्थिति $A$ के निर्देशांक $(0,2)$ हैं। उस अन्य बिन्दु के निर्देशांक, जहाँ पर तात्क्षणिक वेग व औसत वेग समान हैं, होंगे
एक प्रक्षेपण (projectile) को समतल धरातल से गति $v$ तथा प्रक्षेप कोण $\theta$ से प्रक्षेपित किया गया है। जब गुरूत्वाकर्षण के कारण त्वरण $g$ है तो प्रक्षेपण की परास $d$ है। यदि अपने प्रक्षेप पथ की अधिकतम ऊँचाई पर, प्रक्षेपण एक अन्य क्षेत्र में प्रवेश करता है जिसका प्रभावी त्वरण (effective acceleration) $g^{\prime}=\frac{g}{0.81}$ है तब नयी परास $d^{\prime}$ $=n d$ है। $n$ का मान है।. . . . . .
निम्नलिखित में से प्रत्येक कथन को ध्यानपूर्वक पढ़िए तथा कारण एवं उदाहरण सहित बताइए कि क्या यह सत्य है या असत्य :
अदिश वह राशि है जो
$(a)$ किसी प्रक्रिया में संरक्षित रहती है,
$(b)$ कभी ऋणात्मक नहीं होती,
$(c)$ विमाहीन होती है,
$(d)$ किसी स्थान पर एक बिंदु से दूसरे बिंदु के बीच नहीं बदलती,
$(e)$ उन सभी दर्शकों के लिए एक ही मान रखती है चाहे अक्षों से उनके अभिविन्यास भिन्न-भिन्न क्यों न हों ।
एक कण का स्थिति-सदिश समय के साथ निम्न सूत्र से बदलता है, $\overrightarrow{ r }( t )=15 t ^{2} \hat{ i }+\left(4-20 t ^{2}\right) \hat{ j } t =1$ पर कण के त्वरण का परिमाण होगा ?