The probabilities of occurrence of two events are respectively $0.21$ and $0.49$. The probability that both occurs simultaneously is $0.16$. Then the probability that none of the two occurs is
$0.3$
$0.46$
$0.14$
None of these
The probability that at least one of $A$ and $B$ occurs is $0.6$. If $A$ and $B$ occur simultaneously with probability $0.3$, then $P(A') + P(B') = $
Fill in the blanks in following table :
$P(A)$ | $P(B)$ | $P(A \cap B)$ | $P (A \cup B)$ |
$\frac {1}{3}$ | $\frac {1}{5}$ | $\frac {1}{15}$ | ........ |
An experiment has $10$ equally likely outcomes. Let $\mathrm{A}$ and $\mathrm{B}$ be two non-empty events of the experiment. If $\mathrm{A}$ consists of $4$ outcomes, the number of outcomes that $B$ must have so that $A$ and $B$ are independent, is
Given $P(A)=\frac{3}{5}$ and $P(B)=\frac{1}{5}$. Find $P(A $ or $B),$ if $A$ and $B$ are mutually exclusive events.
In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is $0.8$ and the probability of passing the second examination is $0.7 .$ The probability of passing at least one of them is $0.95 .$ What is the probability of passing both ?