दो घटनाओं के घटित होने की प्रायिकताएँ क्रमश: $0.21$ तथा $0.49$ हैं। दोनों के साथ-साथ घटने की प्रायिकता $0.16$ है तब दोनों में से किसी के भी घटित न होने की प्रायिकता है
$0.3$
$0.46$
$0.14$
इनमें से कोई नहीं
तीन घटनाओं $A$, $B$ तथा $C$ के लिए
$P(A$ अथवा $B$ में से केवल एक घटित हांती है $)$
$=P(B$ अथवा $C$ में से केवल एक घटित होती है $)$
$=P(C$ अथवा $A$ में से केबल एक घटित होती है
$=\frac{1}{4}$ तथा $P$ (सभी तीन घटनाएँ एक साथ घटित होती है)
$=\frac{1}{16}$ है,
तो प्रायिकता कि कम से कम एक घटना घटित हो, है:
दो घटनाओं $A$ तथा $B$ में से कम से कम एक के घटित होने की प्रायिकता $0.6$ है। यदि घटनाओं $A$ तथा $B$ के साथ-साथ घटित होने की प्रायिकता $0.2$ हो, तो $P\,(\bar A) + P\,(\bar B) = $
एक छात्र की गणित, भौतिकी, रसायन शास्त्र में उत्तीर्ण होने की प्रायिकतायें क्रमश: $m, p$ तथा $c$ हैं। इन विषयों में से इस छात्र के कम से कम एक विषय में पास होने की सम्भावना $75\%$ है, कम से कम दो विषयों में पास होने की $50\%$ और केवल दो ही विषयों में पास होने की सम्भावना $40\%$ हैं। निम्नलिखित में से कौन-कौन से सम्बन्ध सत्य हैं
यदि $A$ तथा $B$ दो परस्पर अपवर्जी घटनाएँ हों, तो $P\,(A + B) = $
यदि $E$ और $F$ घटनाएँ इस प्रकार हैं कि $P ( E )=\frac{1}{4}, P ( F )=\frac{1}{2}$ और $P ( E$ और $F )=\frac{1}{8},$ तो ज्ञात कीजिए $P ( E$ या $F )$