The probability of solving a question by three students are $\frac{1}{2},\,\,\frac{1}{4},\,\,\frac{1}{6}$ respectively. Probability of question is being solved will be
$\frac{{33}}{{48}}$
$\frac{{35}}{{48}}$
$\frac{{31}}{{48}}$
$\frac{{37}}{{48}}$
The probabilities that a student passes in Mathematics, Physics and Chemistry are $m, p$ and $c$ respectively. On these subjects, the student has a $75\%$ chance of passing in at least one, a $50\%$ chance of passing in at least two and a $40\%$ chance of passing in exactly two. Which of the following relations are true
If $A$ and $B$ are two events, then the probability of the event that at most one of $A, B$ occurs, is
Let $\mathrm{E}$ and $\mathrm{F}$ be events with $\mathrm{P}(\mathrm{E})=\frac{3}{5}, \mathrm{P}(\mathrm{F})$ $=\frac{3}{10}$ and $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\frac{1}{5} .$ Are $\mathrm{E}$ and $\mathrm{F}$ independent ?
In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is $0.8$ and the probability of passing the second examination is $0.7 .$ The probability of passing at least one of them is $0.95 .$ What is the probability of passing both ?
$A$ and $B$ are two independent events. The probability that both $A$ and $B$ occur is $\frac{1}{6}$ and the probability that neither of them occurs is $\frac{1}{3}$. Then the probability of the two events are respectively