एक प्रश्न को तीन विद्यार्थियों के द्वारा हल करने की प्रायिकता क्रमश: $\frac{1}{2},\,\,\frac{1}{4},\,\,\frac{1}{6}$ है, तब प्रश्न हल हो जायेगा, इस बात की प्रायिकता होगी
$\frac{{33}}{{48}}$
$\frac{{35}}{{48}}$
$\frac{{31}}{{48}}$
$\frac{{37}}{{48}}$
यदि $X$ के परीक्षा में फेल होने की प्रायिकता $0.3$ तथा $Y$ के फेल होने की प्रायिकता $0.2$ हो, तो या तो $X$ या $Y$ के फेल होने की प्रायिकता है
यदि $P(A) = P(B) = x$ तथा $P(A \cap B) = P(A' \cap B') = \frac{1}{3}$ हो, तो $x = $
$12$ टिकट जिन पर $1, 2, 3......12$ अंकित है। एक टिकट यदृच्छया निकाला जाता है तो संख्या को $2$ या $3$ का गुणज होने की प्रायिकता है
तीन घटनाओं $A , B$ तथा $C$ की प्रायिकताएं $P ( A )=0.6$, $P ( B )=0.4$ तथा $P ( C )=0.5$ है। यदि $P ( A \cup B )=0.8$, $P ( A \cap C )=0.3, P ( A \cap B \cap C )=0.2, P ( B \cap$ $C )=\beta$ तथा $P ( A \cup B \cup C )=\alpha$, जहाँ $0.85 \leq \alpha \leq 0.95$, तो $\beta$ निम्न में से किस अंतराल में है
यदि $A$ तथा $B$ दो ऐसी घटनाएँ हों कि $P\,(A \cup B) = \frac{5}{6}$,$P\,(A \cap B) = \frac{1}{3}$ तथा $P\,(\bar B) = \frac{1}{3},$ तो $P\,(A) = $