निम्नलिखित सारणी में खाली स्थान भरिए:
$P(A)$ | $P(B)$ | $P(A \cap B)$ | $P (A \cup B)$ |
$0.35$ | ........... | $0.25$ | $0.6$ |
Here, $P(A)=0.35$, $P(A \cap B)=0.25$, $P(A \cup B)=0.6$
We know that $P (A \cup B)= P ( B )+ P ( B )- P (A \cap B)$
$\therefore $ $0.6=0.35+ P ( B )-0.25$
$\Rightarrow $ $P ( B )=0.6-0.35+0.25$
$\Rightarrow $ $P ( B )=0.5$
निम्नलिखित सारणी में खाली स्थान भरिए:
$P(A)$ | $P(B)$ | $P(A \cap B)$ | $P (A \cup B)$ |
$\frac {1}{3}$ | $\frac {1}{5}$ | $\frac {1}{15}$ | ........ |
यदि $P(A) = 0.25,\,\,P(B) = 0.50$ तथा $P(A \cap B) = 0.14,$ तब $P(A \cap \bar B) =$
यदि $A$ व $B$ कोई दो घटनाएँ हैं, तो $P(A \cup B) = $
एक छात्रावास में $60 \%$ विद्यार्थी हींदी का, $40 \%$ अंग्रेज़ी का और $20 \%$ दोनों अखबार पढ़ते हैं। एक छात्रा को यादृच्छ्या चुना जाता है।
यदि वह अंग्रेज़ी का अखबार पढ़ती है तो उसके हींदी का अखबार भी पढने वाली होने की प्रायिकता ज्ञात कीजिए।
एक विशेष समस्या को $A$ और $B$ द्वारा स्वतंत्र रूप से हल करने की प्रायिकताएँ क्रमश : $\frac{1}{2}$ और $\frac{1}{3}$ हैं। यदि दोनों, स्वतंत्र रूप से, समस्या हल करने का प्रयास करते हैं, तो प्रायिकता ज्ञात कीजिए कि
समस्या हल हो जाती है।