$A$ और $B$ दो घटनाएँ इस प्रकार हैं कि $P ( A )=0.54, P ( B )=0.69$ और $P ( A \cap B )=0.35 .$
ज्ञात कीजिए

$P \left( A ^{\prime} \cap B ^{\prime}\right)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that $P ( A )=0.54$,  $P ( B )=0.69$,  $P (A \cap B)=0.35$

$A^{\prime} \cap B^{\prime}=(A \cup B)^{\prime}$         [by De Morgan's law]

$\therefore P \left(A^{\prime} \cap B^{\prime}\right)$ $= P (A \cup B)^{\prime}=1- P (A \cup B)=1-0.88=0.12$

Similar Questions

ताश के $52$ पत्तों की एक सुमिश्रित गड्डी से एक पत्ता यादृच्छया निकाला जाता है। निम्नलिखित में से किन दशाओं में घटनाएँ $E$ और $F$ स्वतंत्र हैं?

$E :$ 'निकाला गया पत्ता हुकुम का है

$F :$ 'निकाला गया पत्ता इक्का है'

$A$ और $B$ दो घटनाएँ इस प्रकार हैं कि $P ( A )=0.54, P ( B )=0.69$ और $P ( A \cap B )=0.35 .$
ज्ञात कीजिए

$P \left( B \cap A ^{\prime}\right)$

दो विद्यार्थियों अनिल और आशिमा एक परीक्षा में प्रविष्ट हुए। अनिल के परीक्षा में उत्तीर्ण होने की प्रायिकता $0.05$ है और आशिमा के परीक्षा में उत्तीर्ण होने की प्रायिकता $0.10$ है। दोनों के परीक्षा में उत्तीर्ण होने की प्रायिकता $0.02$ है। प्रायिकता ज्ञात कीजिए कि

दोनों में से कम से कम एक परीक्षा में उत्तीर्ण नहीं होगा।

यदि $A$ व $B$ कोई दो घटनाएँ हैं, तो $P(A \cup B) = $

$A$ और $B$ स्वतंत्र घटनाएँ दी गई हैं जहाँ $P ( A )=0.3, P ( B )=0.6$ तो $P ( A$ और $B$ )  का मान ज्ञात कीजिए।