$2^{\frac{1}{4}} \cdot 4^{\frac{1}{16}} \cdot 8^{\frac{1}{48}} \cdot 16^{\frac{1}{128}} \cdot \ldots .$ to $\infty$ ની કિમંત મેળવો.
$2^{\frac{1}{2}}$
$2^{\frac{1}{4}}$
$2$
$1$
$x$ ની કઈ કિંમત માટે $\frac{2}{7}, x,-\frac{7}{2}$ સમગુણોત્તર શ્રેણીમાં થાય ?
અહી બે સમગુણોતર શ્રેણીઓ $2,2^{2}, 2^{3}, \ldots$ અને $4,4^{2}, 4^{3}, \ldots$ આપેલ છે કે જેમાં અનુક્રમે $60$ અને $n$ પદ આપેલ છે. જો બધાજ $60+n$ પદોનો સમગુણોતર મધ્યક $(2)^{\frac{225}{8}}$, હોય તો $\sum_{ k =1}^{ n } k (n- k )$ ની કિમંત મેળવો.
ધારોકે $x_{1}, x_{2}, x_{3}, \ldots, x_{20}$ એ સમગુણોતર શ્રેણીમાં છે, જ્યાં $x_{1}=3$ અને સામાન્ય ગુણોત્તર $\frac{1}{2}$ છે. પ્રત્યેક $x_{i}$ ને $\left(x_{i}-i\right)^{2}$ વડે બદલી એક નવી માહિતી રચવામાં આવે છે. જો નવી માહિતીનો મધ્યક $\bar{x}$ હોય, તો $\bar{x}$ કે તેથી નાના તમામ પૂણાંકોમાં સૌથી મોટો પૂણાંક ............ છે.
જો ${\text{x}}$ અને ${\text{y}}$ વચ્ચેનો સમગુણોતર મધ્યક ${\text{G}}$ હોય, તો $\frac{1}{{{G^2} - {x^2}}}\, + \,\frac{1}{{{G^2} - {y^2}}}$ નું મૂલ્ય થાય?
જો $x, y, z$ સમાંતર શ્રેણીમાં અને $x, y, t$ સમગુણોત્તર શ્રેણીમાં હોય, તો $x, x - y, t - z$ કઈ શ્રેણીમાં હશે ?