समीकरण ${x^3} + 3Hx + G = 0$ में यदि $G$ तथा $H$ वास्तविक हों और ${G^2} + 4{H^3} > 0,$ तब मूल होंगे
सभी वास्तविक व समान
सभी वास्तविक व अलग-अलग
एक वास्तविक व दो काल्पनिक
सभी वास्तविक व दो समान
बहुपद समीकरण $x^3-3 a x^2+\left(27 a^2+9\right) x+2016=0$ का
मान लें कि एक द्वियातीय बहुपद $P(x)=a x^2+b x+c$ के धनात्मक गुणांक क्रम से $a, b, c$ अकगणितीय श्रेढ़ी $(arithmatic\,progression)$ में है. यदि $P(x)=0$ के पूर्णाक मूल $\alpha$ और $\beta$ हों, तो $\alpha+\beta+\alpha \beta$ का मान होगा
समीकरण $x^{2}+|2 x-3|-4=0$, के मूलों का योगफल है
$m$ के पूर्णांक मानों की संख्या, जिसके लिये द्विघात व्यंजक $(1+2 m ) x ^{2}-2(1+3 m ) x +4(1+ m ), x \in R$ सदैव धनात्मक हो, होगी
यदि $x$ वास्तविक है तथा $k = \frac{{{x^2} - x + 1}}{{{x^2} + x + 1}}$ हो, तब