प्रयोगशाला में एक धातु के तार की त्रिज्या ($r$), लम्बाई $(l)$ तथा प्रतिरोध $(\mathrm{R})$ का मापन निम्न प्रकार किया
गया है।
$\mathrm{r}=(0.35 \pm 0.05) \mathrm{cm}$
$\mathrm{R}=(100 \pm 10) \mathrm{ohm}$
$l=(15 \pm 0.2) \mathrm{cm}$
तार के पदार्थ की प्रतिरोधकता में प्रतिशत त्रुटि है :

  • [JEE MAIN 2024]
  • A
    $25.6 \%$
  • B
    $39.9 \%$
  • C
    $37.3 \%$
  • D
    $35.6 \%$

Similar Questions

सरल लोलक का उपयोग करते हुए, गुरूत्वीय त्वरण $( g )$ को ज्ञात करने के किसी प्रयोग में,$1$ सेकण्ड रिसोल्यूशन (विभेदन काल) वाली घड़ी के $100$ दोलनों के समय से मापा गया आवर्तकाल $0.5\,s$ आता है। यदि मापी गई लम्बाई का मान $10 cm$ है जिसमें ज्ञात शुद्धि $1\,mm$ है। $g$ के परिकलित मान में प्राप्त शुद्धता $x \%$ है। $x$ का मान है।

  • [JEE MAIN 2022]

$R _{1}=100 \pm 3$ ओम व $R_{2}=$ $200 \pm 4$ ओम के दो प्रतिरोधकों को $(a)$ श्रेणी क्रम में, $(b)$ पाश्व क्रम में संयोजित किया गया है। $(a)$ श्रेणी क्रम संयोजन तथा $(b)$ पाश्व क्रम संयोजन में तुल्य प्रतिरोध ज्ञात कीजिए। $(a)$ के लिए संबंध $R=R_{1}+R_{2}$ एवं $(b)$ के लिए $\frac{R}{R^{2}} \frac{R_{1}}{R_{1}^{2}} \frac{R_{2}}{R_{2}^{2}}$ का उपयोग कीजिए।

किसी सरल लोलक का आवर्त, $T=2 \pi \sqrt{\frac{L}{g}}$ है। $L$ का मापित मान $20.0\, cm$ है, जिसकी यथार्थता $1\, mm$ है। इस लोलक के $100$ दोलनों का समय $90\; s$ है, जिसे $1 \;s$ विभेदन की घड़ी से मापा गया है। तो $g$ के निर्धारण में यथार्थता ........... $\%$ होगी

  • [JEE MAIN 2015]

एक निकाय की समय $t$ पर ऊर्जा $E(t)=A^2 \exp (-\alpha t )$ फलन द्वारा दी जाती है, जहाँ $\alpha=0.2 s ^{-1}$ हैं। $A$ के मापन में $1.25 \%$ की प्रतिशत त्रुटि है। यदि समय के मापन में $1.50 \%$ की त्रुटि है तब $t =5 s$ पर $E ( t )$ के मान में प्रतिशत त्रुटि होगी।

  • [IIT 2015]

कोई भौतिक राशि $P$. चार प्रेक्षण-योग्य राशियों $a.b . c$ तथा $d$ से इस प्रकार संबधित है | $P \quad a^{3} b^{2} / \sqrt{c} d$ $a, b, c$ तथा $d$ के मापने में प्रतिशत त्रुटियां क्रमश: $1 \% .3 \% .4 \% .$ तथा $2 \% .$ हैं । राशि $P$ में प्रतिशत त्रुटि कितनी है ? यदि उपर्युक्त संबंध का उपयोग करके $P$ का परिकलित मान $3.763$ आता है, तो आप परिणाम का किस मान तक निकटन करेंगे ?