प्रयोगशाला में एक धातु के तार की त्रिज्या ($r$), लम्बाई $(l)$ तथा प्रतिरोध $(\mathrm{R})$ का मापन निम्न प्रकार किया

गया है।

$\mathrm{r}=(0.35 \pm 0.05) \mathrm{cm}$

$\mathrm{R}=(100 \pm 10) \mathrm{ohm}$

$l=(15 \pm 0.2) \mathrm{cm}$

तार के पदार्थ की प्रतिरोधकता में प्रतिशत त्रुटि है :

  • [JEE MAIN 2024]
  • A

    $25.6 \%$

  • B

    $39.9 \%$

  • C

    $37.3 \%$

  • D

    $35.6 \%$

Similar Questions

एक आयताकार कमरे की लम्बाई और चौड़ाई क्रमश: $3.95 \pm 0.05 \,m$ एवं $3.05 \pm 0.05 \,m$ मापी गयी है. कमरे के फर्श का क्षेत्रफल ..................... $m^2$ होगा

  • [KVPY 2016]

एक भौतिक राशि $P$ निम्न संबंध द्वारा परिभाषित की जाती है।

$P=a^{1 / 2} b^{2} c^{3} d^{-4}$

यदि $a , b , c$ और $d$ के मापन में सापेक्ष त्रुटि क्रमशः $2 \%, 1 \%, 3 \%$ व $5 \%$ हो तो $P$ में सापेक्ष त्रुटि होगी

  • [JEE MAIN 2017]

हम एक सरल लोलक का दोलन-काल ज्ञात करते हैं। प्रयोग के क्रमिक मापनों में लिए गए पाठ्यांक हैं $: 2.63, s , 2.56\, s , 2.42\, s , 2.71\, s$ एवं $2.80\, s$ । निरपेक्ष त्रुटि, सापेक्ष त्रुटि एवं प्रतिशत त्रुटि परिकलित कीजिए।

एक प्रयोग में निम्न प्रेक्षण लिए गये: $L = 2.820\, m, M = 3.00 \,kg, l = 0.087 \,cm$, Diameter $D = 0.041 \,cm$ Taking $g = 9.81$ $m/{s^2}$  लेकर तथा सूत्र $Y=\frac{{4MgL}}{{\pi \,{D^2}l}}$ का उपयोग करते हुए $Y$ में अधिकतम प्रतिशत त्रुटि प्राप्त ......... $\%$ होगी

यदि सभी स्वतंत्र राशियों (independent quantities) की मापन न्रुटियाँ (measurement errors) ज्ञात हो, तो किसी निर्भर राशि (dependent quantity) की न्रुटि का परिकलन (calculation) किया जा सकता है। इस परिकलन में श्रेणी प्रसार (series expansion) का प्रयोग किया जाता है और इस प्रसार को न्रुटि (error) के पहले घात (first power) पर रून्डित (truncate) किया जाता है। उदाहरण स्वरूप, सम्बन्ध $z=x / y$ में यदि $x, y$ और $z$ की त्रुटियाँ क्रमशः $\Delta x, \Delta y$ और $\Delta z$ हों, तो

$z \pm \Delta z=\frac{x \pm \Delta x}{y \pm \Delta y}=\frac{x}{y}\left(1 \pm \frac{\Delta x}{x}\right)\left(1 \pm \frac{\Delta y}{y}\right)^{-1} .$

$\left(1 \pm \frac{\Delta y}{y}\right)^{-1}$ का श्रेणी प्रसार, $\Delta y / y$ में पहले घात तक, $1 \mp(\Delta y / y)$ है। स्वतंत्र राशियों की आपेक्षिक त्रुटियाँ (relative errors) सदैव जोड़ी जाती हैं। इसलिए $z$ की त्रुटि होगी

$\Delta z=z\left(\frac{\Delta x}{x}+\frac{\Delta y}{y}\right) .$

उपरोक्त परिकलन में $\Delta x / x \ll 1, \Delta y / y \ll 1$ माने गये हैं। इसलिए इन राशियों की उच्चतर घातें (higher powers) उपेक्षित हैं।

($1$) एक विमा-रहित (dimensionless) राशि $a$ को माप कर, एक अनुपात (ratio) $r=\frac{(1-a)}{(1+a)}$ का परिकलन करना है। यदि $a$ की मापन की त्रुटि $\Delta a$ है ( $\Delta a / a \ll 1)$, तो $r$ के परिकलन की त्रुटि $\Delta r$ क्या होगी?

$(A)$ $\frac{\Delta a }{(1+ a )^2}$  $(B)$ $\frac{2 \Delta a }{(1+ a )^2}$  $(C)$ $\frac{2 \Delta a}{\left(1-a^2\right)}$  $(D)$ $\frac{2 a \Delta a}{\left(1-a^2\right)}$

($2$) एक प्रयोग के आरंभ में रेडियोएक्टिव नाभिकों की संख्या $3000$ है। प्रयोग के पहले $1.0$ सेकंड में $1000 \pm 40$ नाभिकों का क्षय हो जाता है। यदि $|x| \ll 1$ हो, तो $x$ के पहले घात तक $\ln (1+x)=x$ है। क्षयांक (decay constant) $\lambda$ के निर्धारण में त्रुटि $\Delta \lambda, s^{-1}$ में, हैtion of the decay constant $\lambda$, in $s ^{-1}$, is

$(A) 0.04$  $(B) 0.03$  $(C) 0.02$  $(D) 0.01$

इस प्रश्न के उतर दीजिये $1$ ओर $2.$

  • [IIT 2018]