વિધેય $f : R \rightarrow  R$, $f(x) = \frac{{{{(x\, + \,1)}^4}}}{{{x^4} + \,1}}$ નો વિસ્તારગણ ...... છે 

  • A

    [$0 , \infty$] 

  • B

    [$0 , 16$]

  • C

    [$0 , 8$]

  • D

    [$0 , 32$]

Similar Questions

જો $f(x) = {(x + 1)^2} - 1,\;\;(x \ge - 1)$ તો ગણ $S = \{ x:f(x) = {f^{ - 1}}(x)\} $ એ . . . .

  • [IIT 1995]

જો $f\,:\,R \to R$ પર વિધેય $f\left( x \right) = {x^3} + {x^2}f'\left( 1 \right) + xf''\left( 2 \right) + f'''\left( 3 \right)$, $x \in R$ તો $f(2)$ મેળવો.

  • [JEE MAIN 2019]

વિધેય $f(x)={\left( {1 + \frac{1}{x}} \right)^x}$ હોય તો f (x) નો વિસ્તાર મેળવો

વિધાન $-1$ : સમીકરણ $x\, log\, x = 2 - x$ ની $x$ ના ઓછાંમાં ઓછી એક કિમંત $1$ અને $2$ ની વચ્ચે હશે .

વિધાન $-2$ : વિધેય $f(x) = x\, log\, x$ એ અંતરાલ $[1, 2]$ માં વધતું વિધેય છે અને $g (x) = 2 -x$ એ અંતરાલ $[ 1 , 2]$ માં ઘટતું વિધેય છે અને આ વિધેય ના આલેખો છેદબિંદુએ $[ 1 , 2]$ માં આવેલ છે .

  • [JEE MAIN 2013]

વક્ર $y = \frac{|x-x^2|}{x^2-x}$ નો ગ્રાફ નીચેનામાંથી ક્યો છે ?