1.Relation and Function
medium

સાબિત કરો કે માનાંક વિધેય $f : R \rightarrow R,$ $(x)=|x|$ દ્વારા વ્યાખ્યાયિત વિધેય એક-એક નથી અને વ્યાપ્ત પણ નથી. જો $x$ ધન અથવા શૂન્ય (અનૃણ) હોય, તો $|x| = x$ અને $x$ ઋણ હોય, તો $|x| =  - x$.

Option A
Option B
Option C
Option D

Solution

$f:$ $R \rightarrow R$ is given by $f(x) = |x| = \left\{ {\begin{array}{*{20}{l}}
  X&{{\text{ if }}X \geqslant 0} \\ 
  { – X}&{{\text{ if }}X < 0} 
\end{array}} \right.$

It is clear that $f(-1)=|-1|=1$ and $f(1)=|1|=1$

$\therefore f(-1)=f(1),$ but $-1 \neq 1$

$\therefore f$ is not one $-$ one.

Now, consider $-1 \in R$

It is known that $f(x)=|x|$ is always non-negative. Thus, there does not exist any

element $x$ in domain $R$ such that $f(x)=|x|=-1$

$\therefore f$ is not onto.

Hence, the modulus function is neither one-one nor onto.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.