દરેક $x\,\, \in \,R\,,x\, \ne \,0,$ જો ${f_0}(x) = \frac{1}{{1 - x}}$ અને ${f_{n + 1}}(x) = {f_0}({f_n}(x)),$ $n\, = 0,1,2,....$ તો ${f_{100}}(3) + {f_1}\left( {\frac{2}{3}} \right) + {f_2}\left( {\frac{3}{2}} \right)$ ની કિમંત મેળવો.

  • [JEE MAIN 2016]
  • A

    $\frac {8}{3}$

  • B

    $\frac {4}{3}$

  • C

    $\frac {5}{3}$

  • D

    $\frac {1}{3}$

Similar Questions

જો શૂન્યતર વાસ્તવિક સંખ્યા $b$ અને $c$ છે કે જેથી $min \,f\left( x \right) > \max \,g\left( x \right)$, કે જ્યાં  $f\left( x \right) = {x^2} + 2bx + 2{c^2}$ અને $g\left( x \right) = {-x^2} - 2cx + {b^2}$$\left( {x \in R} \right)$; તો  $\left| {\frac{c}{b}} \right|$ એ . . . અંતરાલ માં છે .

  • [JEE MAIN 2014]

$f :\{1,3,5, 7, \ldots \ldots . .99\} \rightarrow\{2,4,6,8, \ldots \ldots, 100\}$ પરના એક-એક અને વ્યાપ્ત વિધેયની સંખ્યા મેળવો કે જેથી $f(3) \geq f(9) \geq f(15) \geq f(21) \geq \ldots \ldots f(99), \quad$ થાય.

  • [JEE MAIN 2022]

જો $f(x)$ માટે $f(7 -x) = f(7 + x)\ \forall \,x\, \in \,R$ મળે કે જેથી $f(x)$ ને $5$ ભિન્ન વાસ્તવિક બીજો મળે કે જેનો સરવાળો $S$ થાય તો $S/7$ ની કિમત ......... થાય.

વિધેય $f(x) = {\sin ^{ - 1}}5x$ નો પ્રદેશ મેળવો.

જો ${x_1},{x_2} \in [ - 1,\,1]$ માટે $f({x_1}) - f({x_2}) = f\left( {\frac{{{x_1} - {x_2}}}{{1 - {x_1}{x_2}}}} \right)$, તો $f(x)  =$