7.Binomial Theorem
hard

${\left( {{x^2} + \frac{2}{x}} \right)^{15}}$ ના વિસ્તરણમાં $x^{15}$ ના સહગુણક અને અચળ પદનો ગુણોત્તર મેળવો.

A

$7: 16$

B

$7:64$

C

$1: 4$

D

$1: 32$

(JEE MAIN-2013)

Solution

$T_{r+1}=^{15} C_{r}\left(x^{2}\right)^{15-r} \cdot\left(2 x^{-1}\right)^r$

$=15 \mathrm{C}_{r} \times(2)^{r} \times x^{30-3r}$

For independent term, $30-3 r=0$

$\Rightarrow r=10$

Hence the term independent of $x$.

$\mathrm{T}_{11}=^{15} \mathrm{C}_{10} \times(2)^{10}$

For term involve $x^{15}, 30-3 r=15 \Rightarrow r=5$

Hence coefficient of $x^{15}=^{15} C_{5} \times(2)^{5}$

Required ratio

$ = \frac{{{\text{15}}{{\text{C}}_5} \times {{(2)}^5}}}{{15{C_{10}} \times {{(2)}^{10}}}} = \frac{{\frac{{15!}}{{10!5!}}}}{{\frac{{15!}}{{5!10!}} \times {{(2)}^5}}}$

$ = 1:32$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.