${\left( {\sqrt {\frac{x}{3}} + \frac{3}{{2{x^2}}}} \right)^{10}}$ ના વિસ્તરણમાં અચળ પદ મેળવો.
$3\over2$
$5\over4$
$5\over2$
એકપણ નહીં.
જો ${\left( {2 + \frac{x}{3}} \right)^{55}}$ ના વિસ્તરણમાં $x$ ની ઘાતક અનુક્રમે વધે છે અને બે ક્રમિક પદમાં આવેલ $x$ની ઘાતાંકના સહગુણક સરખા હોય તો તે પદો મેળવો.
${\left( {3x - \frac{1}{{{x^2}}}} \right)^{10}}$ then $5^{th}$ ના વિસ્તરણમાં છેલ્લેથી પાંચમું પદ મેળવો
${\left( {\frac{{x + 1}}{{{x^{2/3}} - {x^{\frac{1}{3}}} + 1\;}}--\frac{{x - 1}}{{x - {x^{1/2}}}}} \right)^{10}}$ના વિસ્તરણમાં અચળ પદ મેળવો.
${\left( {{x^4} - \frac{1}{{{x^3}}}} \right)^{15}}$ ના વિસ્તરણમાં ${x^{32}}$ નો સહગુણક મેળવો.
${\left( {2x - \frac{1}{{2{x^2}}}} \right)^{12}}$ ના વિસ્તરણમાં અચળપદ મેળવો.