4-1.Complex numbers
medium

સંકર સંખ્યા $z$ અને બીજી સંકર સંખ્યાનો સરવાળો $\pi $ હોય તો બીજી સંકર સંખ્યા . . . . થાય

A

$\bar z$

B

$ - \overline z $

C

$z$

D

$ - z$

Solution

(b) We have $z = x + iy$ and let their complex ${z_2}$ and given that $arg\;(z) + {z_2} = \pi $
${z_2} = \pi – arg(z)$;

${z_2} = \pi  + \left[ { – {{\tan }^{ – 1}}\frac{y}{x}} \right]$
${z_2} = \pi + [arg\;(\bar z)]$
which lies in second quadrant, i.e. $ – \bar z$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.