સંકર સંખ્યા $z$ અને બીજી સંકર સંખ્યાનો સરવાળો $\pi $ હોય તો બીજી સંકર સંખ્યા . . . . થાય

  • A

    $\bar z$

  • B

    $ - \overline z $

  • C

    $z$

  • D

    $ - z$

Similar Questions

જો$z = \frac{{1 - i\sqrt 3 }}{{1 + i\sqrt 3 }},$તો $arg(z) = $ ............. $^\circ$

વિધાનો

વિધાન $I$: કોઈ બે શુન્યેતર સંકર સંખ્યાઓ $z_1, z_2$

માટે $\left(\left|z_1\right|+\left|z_2\right|\right)\left|\frac{z_1}{\left|z_1\right|}+\frac{z_2}{\left|z_2\right|}\right| \leq 2\left(\left|z_1\right|+\left|z_2\right|\right)$ અને

વિધાન $II$ : જો $x, y, z$ એ ત્રણ ભિન્ન સંકર સંખ્યાઓ હોય તથા $\mathrm{a}, \mathrm{b}, \mathrm{c}$ એ ત્રણ ધન વાસ્તવિક સંખ્યાઓ એવી હોય કે જેથી

$\frac{\mathrm{a}}{|y-z|}=\frac{\mathrm{b}}{|z-x|}=\frac{\mathrm{c}}{|x-y|}$ તો $\frac{\mathrm{a}^2}{y-z}+\frac{\mathrm{b}^2}{z-x}+\frac{\mathrm{c}^2}{x-y}=1$

  • [JEE MAIN 2024]

સમીકરણ $\left( {\frac{{3 - 4ix}}{{3 + 4ix}}} \right) = $ $\alpha  - i\beta \,(\alpha ,\beta \,$વાસ્તવિક છે ) નું સમાધાન કરે તેવી $x$ ની કિમત મેળવો.

સંકર સંખ્યાનો માનાંક અને કોણાંક શોધો. $z=-1-i \sqrt{3}$

જો $|{z_1} + {z_2}| = |{z_1} - {z_2}|$, તો ${z_1}$ અને ${z_2}$ ના કોણાંકનો તફાવત મેળવો.