The સંબંધ "congruence modulo $m$" is
Reflexive only
પરંપરિત only
સંમિત only
An equivalence સંબંધ
જો $R$ એ ગણ $N × N$ પરનોે સંબંધ દર્શાવે કે જે $(a,\,b)R(c,\,d) \Rightarrow a + d = b + c.$ દ્વારા વ્યાખ્યાયિત હોય તો $R$ એ . . . .
જો $A = \{1, 2, 3, 4\}$ અને $R$ એ $A$ પરનો સંબંધ છે કે જેથી $R = \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1), (3, 1), (1, 3)\}$.તો $R$ એ . . .
પ્રાકૃતિક સંખ્યા પર સંબંધ $“ < ”$ એ . . .
$\{x, y\}$ થી $\{x, y\}$ પરની સંબંધ $R$ એ સંમિત અને પરંપરિત બંંને હોય તેની સંભાવના $\dots\dots\dots$ થાય.
${x^2} = xy$ એ . . . . સંબંધ દર્શાવે છે.