The relation $R =\{( a , b ): \operatorname{gcd}( a , b )=1,2 a \neq b , a , b \in Z \}$ is:
transitive but not reflexive
symmetric but not transitive
reflexive but not symmetric
neither symmetric nor transitive
Let $P$ be the relation defined on the set of all real numbers such that
$P = \left\{ {\left( {a,b} \right):{{\sec }^2}\,a - {{\tan }^2}\,b = 1\,} \right\}$. Then $P$ is
Show that the relation $\mathrm{R}$ in the set $\mathrm{A}$ of points in a plane given by $\mathrm{R} =\{( \mathrm{P} ,\, \mathrm{Q} ):$ distance of the point $\mathrm{P}$ from the origin is same as the distance of the point $\mathrm{Q}$ from the origin $\}$, is an equivalence relation. Further, show that the set of all points related to a point $\mathrm{P} \neq(0,\,0)$ is the circle passing through $\mathrm{P}$ with origin as centre.
If $R = \{(6, 6), (9, 9), (6, 12), (12, 12), (12,6)\}$ is a relation on set $A = \{3, 6, 9, 12\}$ , then relation $R$ is
Show that each of the relation $R$ in the set $A =\{x \in Z : 0 \leq x \leq 12\},$ given by $R =\{(a, b):|a-b| $ is a multiple of $4\}$
If $R = \{ (x,\,y)|x,\,y \in Z,\,{x^2} + {y^2} \le 4\} $ is a relation in $Z$, then domain of $R$ is