दिया है प्रतिरोध $R =$$\frac{V}{i}$ जहाँ $V= 100$ $ \pm 5$ वोल्ट तथा $i = 10$ $ \pm 0.2$ ऐम्पियर है, तो $R$ में कुल त्रुटि ......... $\%$ होगी

  • A

    $5$

  • B

    $7$

  • C

    $5.2$

  • D

    $\frac{5}{2}$

Similar Questions

द्रव्यमान तथा चाल के मापन से प्राप्त द्रव्यमान तथा चाल में प्रतिशत त्रुटियाँ क्रमश: $3\%$ तथा $2\%$ हैं। गतिज ऊर्जा की गणना में अधिकतम त्रुटि ......... $\%$ होगी

सर्ल के प्रयोग में वर्नियर पैमाने का शून्य मुख्य पैमाने पर $3.20 \times 10^{-2} m$ तथा $3.25 \times 10^{-2} m$ के बीच है। वर्नियर पैमाने का बीसवाँ भाग ( $20^{\text {th }}$ division) मुख्य पैमाने के किसी एक भाग के बिलकुल सीध में है। तार पर $2 \ kg$ का अतिरिक्त भार लगाने पर, यह देखा गया कि वर्नियर पैमाने का शून्य अभी भी मुख्य पैमाने पर $3.20 \times 10^{-2} m$ तथा $3.25 \times 10^{-2} m$ के बीच है, परन्तु अब वर्नियर पैमाने का पैंतालिसवाँ भाग ( $45^{\text {th }}$ division) मुख्य पैमाने के किसी अन्य भाग के बिलकुल सीध में है। धातु के पतले तार की लम्बाई $2 m$ तथा अनुप्रस्थ काट का क्षेत्रफल $8 \times 10^{-7} m ^2$ है। पैमाने का अल्पतमांक (least count) $1.0 \times 10^{-5} m$ है। तार के यंग प्रत्यास्थता गुणांक (Young's modulus) में अधिकतम प्रतिशत त्रुटि है।

  • [IIT 2014]

एक $1\,m$ यथार्थ लम्बाई के तार के यंग नियतांक ज्ञात करने के प्रयोग में, जब एक $1\,kg$ द्रव्यमान का भार लगाया जाता है, तो तार की लम्बाई में $\pm 0.02\,mm$ की अनियतता के साथ $0.4\,mm$ की वृद्धि मापी जाती है। तार का व्यास $\pm 0.01\,mm$ की अनियतता के साथ $0.4\,mm$ मापा जाता है। यदि यंग नियतांक मापने में आयी त्रुटि $(\Delta Y )$ $x \times 10^{10} Nm ^{-2}$ है, तो $x$ का मान होगा। [माना $g =10\,m / s ^2$ ]

  • [JEE MAIN 2022]

यदि सभी स्वतंत्र राशियों (independent quantities) की मापन त्रुटियाँ (measurement errors) ज्ञात हो, तो किसी निर्भर राशि (dependent quantity) की त्रुटि का परिकलन (calculation) किया जा सकता है। इस परिकलन में श्रेणी प्रसार (series expansion) का प्रयोग किया जाता है और इस प्रसार को त्रुटि (error) के पहले घात (first power) पर रून्डित (truncate) किया जाता है। उदाहरण स्वरूप, सम्बन्ध $z=x / y$ में यदि $x, y$ और $z$ की त्रुटियाँ क्रमशः $\Delta x, \Delta y$ और $\Delta z$ हों, तो

$z \pm \Delta z=\frac{x \pm \Delta x}{y \pm \Delta y}=\frac{x}{y}\left(1 \pm \frac{\Delta x}{x}\right)\left(1 \pm \frac{\Delta y}{y}\right)^{-1} .$

$\left(1 \pm \frac{\Delta y}{y}\right)^{-1}$ का श्रेणी प्रसार, $\Delta y / y$ में पहले घात तक, $1 \mp(\Delta y / y)$ है। स्वतंत्र राशियों की आपेक्षिक त्रुटियाँ (relative errors) सदैव जोड़ी जाती हैं। इसलिए $z$ की त्रुटि होगी

$\Delta z=z\left(\frac{\Delta x}{x}+\frac{\Delta y}{y}\right) .$

उपरोक्त परिकलन में $\Delta x / x \ll 1, \Delta y / y \ll 1$ माने गये हैं। इसलिए इन राशियों की उच्चतर घातें (higher powers) उपेक्षित हैं।

($1$) एक विमा-रहित (dimensionless) राशि $a$ को माप कर, एक अनुपात (ratio) $r=\frac{(1-a)}{(1+a)}$ का परिकलन करना है। यदि $a$ की मापन की त्रुटि $\Delta a$ है $(\Delta a / a \ll 1)$, तो $r$ के परिकलन की त्रुटि $\Delta r$ क्या होगी ?

$(A)$ $\frac{\Delta \mathrm{a}}{(1+\mathrm{a})^2}$ $(B)$ $\frac{2 \Delta \mathrm{a}}{(1+\mathrm{a})^2}$ $(C)$ $\frac{2 \Delta \mathrm{a}}{\left(1-\mathrm{a}^2\right)}$ $(D)$ $\frac{2 \mathrm{a} \Delta \mathrm{a}}{\left(1-\mathrm{a}^2\right)}$

($2$) एक प्रयोग के आरंभ में रेडियोएक्टिव नाभिकों की संख्या $3000$ है। प्रयोग के पहले $1.0$ सेकंड में $1000 \pm 40$ नाभिकों का क्षय हो जाता है $\mid$ यदि $|x| \ll 1$ हो, तो $x$ के पहले घात तक $\ln (1+x)=x$ है। क्षयांक (decay constant) $\lambda$ के निर्धारण में त्रुटि $\Delta \lambda, s^{-1}$ में, है

$(A) 0.04$    $(B) 0.03$    $(C) 0.02$   $(D) 0.01$

इस प्रश्न के उतर दीजिये $1$ ओर $2.$

  • [IIT 2018]

कोई भौतिक राशि $P$. चार प्रेक्षण-योग्य राशियों $a.b . c$ तथा $d$ से इस प्रकार संबधित है | $P \quad a^{3} b^{2} / \sqrt{c} d$ $a, b, c$ तथा $d$ के मापने में प्रतिशत त्रुटियां क्रमश: $1 \% .3 \% .4 \% .$ तथा $2 \% .$ हैं । राशि $P$ में प्रतिशत त्रुटि कितनी है ? यदि उपर्युक्त संबंध का उपयोग करके $P$ का परिकलित मान $3.763$ आता है, तो आप परिणाम का किस मान तक निकटन करेंगे ?