The resultant of two vectors $\overrightarrow P $ and $\overrightarrow Q $ is $\overrightarrow R .$ If $Q$ is doubled, the new resultant is perpendicular to $P$. Then $R $ equals
$P$
$(P+Q)$
$Q$
$(P-Q)$
Add vectors $\overrightarrow{ A }, \overrightarrow{ B }$ and $\overrightarrow{ C }$ each having magnitude of $50$ unit and inclined to the $X$-axis at angles $45^{\circ}, 135^{\circ}$ and $315^{\circ}$ respectively.
Which pair of the following forces will never give resultant force of $2\, N$
Following sets of three forces act on a body. Whose resultant cannot be zero
Let $\overrightarrow C = \overrightarrow A + \overrightarrow B$
$(A)$ It is possible to have $| \overrightarrow C | < | \overrightarrow A |$ and $ | \overrightarrow C | < | \overrightarrow B|$
$(B)$ $|\overrightarrow C |$ is always greater than $|\overrightarrow A |$
$(C)$ $|\overrightarrow C |$ may be equal to $|\overrightarrow A | + |\overrightarrow B|$
$(D)$ $|\overrightarrow C |$ is never equal to $|\overrightarrow A | + |\overrightarrow B|$
Which of the above is correct
The sum of two forces $\overrightarrow{\mathrm{P}}$ and $\overrightarrow{\mathrm{Q}}$ is $\overrightarrow{\mathrm{R}}$ such that $|\overrightarrow{\mathrm{R}}|=|\overrightarrow{\mathrm{P}}| .$ The angle $\theta$ (in degrees) that the resultant of $2 \overrightarrow{\mathrm{P}}$ and $\overrightarrow{\mathrm{Q}}$ will make with $\overrightarrow{\mathrm{Q}}$ is