समीकरण $\left| {\,\begin{array}{*{20}{c}}a&a&x\\m&m&m\\b&x&b\end{array}\,} \right| = 0$ के मूल हैं

  • A

    $x = a,b$

  • B

    $x = - a, - b$

  • C

    $x = - a,b$

  • D

    $x = a, - b$

Similar Questions

प्रत्येक में $k$ का मान ज्ञात कीजिए यदि त्रिभुजों का क्षेत्रफल $4$ वर्ग इकाई है जहाँ शीर्षबिंदु निम्नलिखित हैं:

$(-2,0),(0,4),(0, \mathrm{k})$

माना $\lambda$ एक ऐसी वास्तविक संख्या है जिसके लिए रैखिक समीकरण निकाय $x + y + z =6$; $4 x +\lambda y -\lambda z =\lambda-2$; $3 x +2 y -4 z =-5$ के अनन्त हल हैं। तो $\lambda$ जिस द्विघात समीकरण का एक मूल है, वह है 

  • [JEE MAIN 2019]

यदि $p{\lambda ^4} + q{\lambda ^3} + r{\lambda ^2} + s\lambda  + t = $ $\left| {\,\begin{array}{*{20}{c}}{{\lambda ^2} + 3\lambda }&{\lambda  - 1}&{\lambda  + 3}\\{\lambda  + 1}&{2 - \lambda }&{\lambda  - 4}\\{\lambda  - 3}&{\lambda  + 4}&{3\lambda }\end{array}\,} \right|,$ तो $t$ का मान है

  • [IIT 1981]

यदि $\left| {\,\begin{array}{*{20}{c}}a&b&0\\0&a&b\\b&0&a\end{array}\,} \right| = 0$, तब

यदि समीकरणों के निकाय $x+y+z=2$, $2 x+4 y-z=6$, $3 x+2 y+\lambda z=\mu$ के अनन्त हल हैं, तो

  • [JEE MAIN 2020]