रैखिक समीकरण निकाय

$x + \lambda y - z = 0$

$\lambda x - y - z = 0$

$x + y - \lambda z = 0$

का एक अतुच्छ हल होने के लिए:

  • [JEE MAIN 2016]
  • A

    $\lambda $ के तथ्यतः दो मान हैं।

  • B

    $\;\lambda $ के तथ्यत: तीन मान हैं।

  • C

    $\lambda $ के अनंत मान हैं।

  • D

    $\;\lambda $ का तथ्यत: एक मान है।

Similar Questions

गुणनफल $x y z$ का वह न्यूनतम मूल्य जिसके लिए सारणिक$\left|\begin{array}{lll} x & 1 & 1 \\ 1 & y & 1 \\ 1 & 1 & z \end{array}\right|$ ॠणेतर है

  • [JEE MAIN 2015]

$\left| {\,\begin{array}{*{20}{c}}{{1^2}}&{{2^2}}&{{3^2}}\\{{2^2}}&{{3^2}}&{{4^2}}\\{{3^2}}&{{4^2}}&{{5^2}}\end{array}\,} \right|$=          

यदि $a,b,c$ धनात्मक वास्तविक संख्यायें हैं, तो $x, y $ और $z$  में निम्नलिखित समीकरण निकाय

$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1$, $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1, - \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1$

  • [IIT 1995]

$\left| {\begin{array}{*{20}{c}}0&a&{ - b}\\{ - a}&0&c\\b&{ - c}&0\end{array}} \right| = $

यदि $a \ne b \ne c,$ तो  $x$  का वह मान, जो समीकरण $\left| {\,\begin{array}{*{20}{c}}0&{x - a}&{x - b}\\{x + a}&0&{x - c}\\{x + b}&{x + c}&0\end{array}\,} \right| = 0$ को संतुष्ट करता है, है