સમીકરણ $\left| {\,\begin{array}{*{20}{c}}0&x&{16}\\x&5&7\\0&9&x\end{array}\,} \right| = 0$ ના બીજ મેળવો.
$0,\,\,12,\,\,12$
$0, 12, -12$
$0, 12, 16$
$0, 9, 16$
નીચેની સુરેખ સમીકરણ સંહતિ $2 x+3 y+2 z=9$ ; $3 x+2 y+2 z=9$ ;$x-y+4 z=8$
જો $\left| {{\kern 1pt} \begin{array}{*{20}{c}}1&2&3\\2&x&3\\3&4&5\end{array}\,} \right| = 0 $ તો $ x =$
વાસ્તવિક સંખ્યા $\alpha$ અને $\beta$ માટે આપેલ સમીકરણ સંહતિને ધ્યાનમાં લ્યો.
$x+y-z=2, x+2 y+\alpha z=1,2 x-y+z=\beta$ આપેલ સમીકરણ સંહતિના અસંખ્ય બીજો હોય તો $\alpha+\beta$ ની કિમંત મેળવો.
સમીકરણની સંહતિ ${x_1} + 2{x_2} + 3{x_3} = a2{x_1} + 3{x_2} + {x_3} = $ $b3{x_1} + {x_2} + 2{x_3} = c$ ને . . . ઉકેલ છે.
જો સુરેખ સમીકરણ સંહતિ $x + ky + 3z = 0;3x + ky - 2z = 0$ ; $2x + 4y - 3z = 0$ ને શૂન્યતેર ઉકેલ $\left( {x,y,z} \right)$ હોય ,તો $\frac{{xz}}{{{y^2}}} = $. . . . .