समीकरण $\left| {\,\begin{array}{*{20}{c}}0&x&{16}\\x&5&7\\0&9&x\end{array}\,} \right| = 0$ के मूल हैं

  • A

    $0,\,\,12,\,\,12$

  • B

    $0, 12, -12$

  • C

    $0, 12, 16$

  • D

    $0, 9, 16$

Similar Questions

माना $a, b, c$ के लिए $b(a+c) \neq 0$ । यदि

$\left| {\begin{array}{*{20}{c}}a&{a + 1}&{a - 1}\\{ - b}&{b + 1}&{b - 1}\\c&{c - 1}&{c + 1}\end{array}} \right| + \left| {\begin{array}{*{20}{c}}{a + 1}&{b + 1}&{c - 1}\\{a - 1}&{b - 1}&{c + 1}\\{{{\left( { - 1} \right)}^{n + 2}} \cdot a}&{{{\left( { - 1} \right)}^{n + 1}} \cdot b}&{{{\left( { - 1} \right)}^n} \cdot c}\end{array}} \right| = 0$

तो $n$ का मान है

  • [AIEEE 2009]

यदि $A =\left[\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right],$ जहाँ $0 \leq \theta \leq 2 \pi$ हो तो:

सारणिकों का मान ज्ञात कीजिए:

$\left|\begin{array}{ccc}3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0\end{array}\right|$

माना $P$ तथा $Q, 3 \times 3$ आव्यूह हैं तथा $P \neq Q$ है। यदि $P^{3}=Q^{3}$ तथा $P^{2} Q=Q^{2} P$ है, तो सारणिक $\left(P^{2}+Q^{2}\right)$ बराबर है

  • [AIEEE 2012]

$\left| {\,\begin{array}{*{20}{c}}{bc}&{bc' + b'c}&{b'c'}\\{ca}&{ca' + c'a}&{c'a'}\\{ab}&{ab' + a'b}&{a'b'}\end{array}\,} \right|$ =