Trigonometrical Equations
medium

The roots of the equation $1 - \cos \theta = \sin \theta .\sin \frac{\theta }{2}$ is

A

$k\pi ,k \in I$

B

$2k\pi ,k \in I$

C

$k\frac{\pi }{2},k \in I$

D

None of these

Solution

(b) We have, $1 – \cos \theta = \sin \theta \,.\,\sin \frac{\theta }{2}$

==> $2{\sin ^2}\frac{\theta }{2} = 2\sin \frac{\theta }{2}\,.\,\cos \frac{\theta }{2}\,.\,\sin \frac{\theta }{2}$

==> $2{\sin ^2}\frac{\theta }{2}\,\left[ {1 – \cos \frac{\theta }{2}} \right] = 0$

==> $\sin \frac{\theta }{2} = 0$ or $2{\sin ^2}\frac{\theta }{4} = 0$

==> $\sin \frac{\theta }{2} = 0$ or $\sin \frac{\theta }{4} = 0$

==> $\frac{\theta }{2} = k\pi $ or $\frac{\theta }{4} = k\pi $.

Hence, $\theta = 2k\pi $ or $\theta = 4k\pi $, $k \in I$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.