Trigonometrical Equations
medium

समीकरण $1 - \cos \theta  = \sin \theta .\sin \frac{\theta }{2}$ के मूल हैं

A

$k\pi ,k \in I$

B

$2k\pi ,k \in I$

C

$k\frac{\pi }{2},k \in I$

D

इनमें से कोई नहीं

Solution

हमें ज्ञात है कि, $1 – \cos \theta  = \sin \theta \,.\,\sin \frac{\theta }{2}$

$\Rightarrow$ $2{\sin ^2}\frac{\theta }{2} = 2\sin \frac{\theta }{2}\,.\,\cos \frac{\theta }{2}\,.\,\sin \frac{\theta }{2}$

$\Rightarrow$ $2{\sin ^2}\frac{\theta }{2}\,\left[ {1 – \cos \frac{\theta }{2}} \right] = 0$

$\Rightarrow$   $\sin \frac{\theta }{2} = 0$ या $2{\sin ^2}\frac{\theta }{4} = 0$

$\sin \frac{\theta }{2}  = 0$ या $\sin \frac{\theta }{4} = 0$

$\Rightarrow$  $\frac{\theta }{2} = k\pi $ या $\frac{\theta }{4} = k\pi $.

$\therefore $ $\theta  = 2k\pi $ या $\theta  = 4k\pi $, $k \in I$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.