The sequence $\frac{5}{{\sqrt 7 }}$, $\frac{6}{{\sqrt 7 }}$, $\sqrt 7 $, ....... is
$H.P.$
$G.P.$
$A.P.$
None of these
The Fibonacci sequence is defined by
$1 = {a_1} = {a_2}{\rm{ }}$ and ${a_n} = {a_{n - 1}} + {a_{n - 2}},n\, > \,2$
Find $\frac{a_{n+1}}{a_{n}},$ for $n=1,2,3,4,5$
If $n$ is the smallest natural number such that $n+2 n+3 n+\ldots+99 n$ is a perfect square, then the number of digits of $n^2$ is
Given that $n$ A.M.'s are inserted between two sets of numbers $a,\;2b$and $2a,\;b$, where $a,\;b \in R$. Suppose further that ${m^{th}}$ mean between these sets of numbers is same, then the ratio $a:b$ equals
If the roots of the equation $x^3 - 9x^2 + \alpha x - 15 = 0 $ are in $A.P.$, then $\alpha$ is
If $p,\;q,\;r$ are in $A.P.$ and are positive, the roots of the quadratic equation $p{x^2} + qx + r = 0$ are all real for