The sequence $\frac{5}{{\sqrt 7 }}$, $\frac{6}{{\sqrt 7 }}$, $\sqrt 7 $, ....... is
$H.P.$
$G.P.$
$A.P.$
None of these
Let $S_{n}$ denote the sum of first $n$-terms of an arithmetic progression. If $S_{10}=530, S_{5}=140$, then $\mathrm{S}_{20}-\mathrm{S}_{6}$ is equal to :
For three positive integers $p , q , r , x ^{ pq p ^2}= y ^{ qr }= z ^{ p ^2 r }$ and $r=p q+1$ such that $3,3 \log _y x, 3 \log _z y, 7 \log _x z$ are in A.P. with common difference $\frac{1}{2}$. Then $r - p - q$ is equal to
Write the first five terms of the sequences whose $n^{t h}$ term is $a_{n}=n \frac{n^{2}+5}{4}$
The sums of $n$ terms of two arithmetic progressions are in the ratio $5 n+4: 9 n+6 .$ Find the ratio of their $18^{\text {th }}$ terms.
The sum of all those terms, of the anithmetic progression $3,8,13, \ldots \ldots .373$, which are not divisible by $3$,is equal to $.......$.