- Home
- Standard 11
- Mathematics
For three positive integers $p , q , r , x ^{ pq p ^2}= y ^{ qr }= z ^{ p ^2 r }$ and $r=p q+1$ such that $3,3 \log _y x, 3 \log _z y, 7 \log _x z$ are in A.P. with common difference $\frac{1}{2}$. Then $r - p - q$ is equal to
$2$
$6$
$12$
$-6$
Solution
$pq ^2=\log _{ x } \lambda$
$qr =\log _{ y } \lambda$
$p ^2 r =\log _{ z } \lambda$
$\log _{ y } x =\frac{ qr }{ pq ^2}=\frac{ r }{ pq } \ldots(1)$
$\log _{ x } z =\frac{ pq ^2}{ p ^2 r }=\frac{ q ^2}{ pr } \ldots(2)$
$\log _{ z } y =\frac{ p ^2 r }{ qr }=\frac{ p ^2}{ q } \ldots \ldots(3)$
$3, \frac{3 r }{ pq }, \frac{3 p ^2}{ q }, \frac{7 q ^2}{ pr } \text { in A.P }$
$\frac{3 r }{ pq }-3=\frac{1}{2}$
$r =\frac{7}{6} pq…..(4)$
$r = pq +1$
$pq =6 \ldots(5)$
$r =7 \ldots \ldots(6)$
$\frac{3 p ^2}{ q }=4$
After solving $p =2$ and $q =3$