જો ${\rm{x}}$ બરાબર શું થાય, તો $\frac{{8{x^2}\, + \,16x\, - \,51}}{{(2x - \,3)\,(x\, + \,4)}}\, > \,3\,\, = \,\,\,......$
$x < -4$
$ - 3\, < \,x\, < \,\frac{3}{2}$
$x\, > \,\frac{5}{2}$
આપેલ બધા જ સાચા છે.
જો સમીકરણ $e^{2 x}-11 e^{x}-45 e^{-x}+\frac{81}{2}=0$ નાં તમામ બીજનો સરવાળો $\log _{ e } P$હોય,તો$p=\dots\dots\dots$
સમીકરણ $x^2 + 5 | x | + 4 = 0$ ના વાસ્તવિક બીજ કયા છે ?
અહી $\alpha, \beta(\alpha>\beta)$ એ દ્રીઘાત સમીકરણ $x ^{2}- x -4=0$ ના બીજ છે. જો $P _{ a }=\alpha^{ n }-\beta^{ n }, n \in N$ તો $\frac{ P _{15} P _{16}- P _{14} P _{16}- P _{15}^{2}+ P _{14} P _{15}}{ P _{13} P _{14}}$ ની કિમંત $......$ થાય.
જો $\alpha,\beta,\gamma, \delta$ એ સમીકરણ $x^4-100x^3+2x^2+4x+10 = 0$ ના બીજો હોય તો $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}+\frac{1}{\delta}$ ની કિમત મેળવો
$x$ ની બધી જ વાસ્તવિક કિંમતો માટે $\frac{x}{{{x^2}\, + \,4}}$ ની કિંમતનો વિસ્તાર કેટલો થશે ?