જો ${\rm{x}}$ બરાબર શું થાય, તો $\frac{{8{x^2}\, + \,16x\, - \,51}}{{(2x - \,3)\,(x\, + \,4)}}\, > \,3\,\, = \,\,\,......$
$x < -4$
$ - 3\, < \,x\, < \,\frac{3}{2}$
$x\, > \,\frac{5}{2}$
આપેલ બધા જ સાચા છે.
જો $\alpha$ અને $\beta$ એ સમીકરણ $\mathrm{x}^{2}-\mathrm{x}-1=0 $ ના બીજ હોય અને $\mathrm{p}_{\mathrm{k}}=(\alpha)^{\mathrm{k}}+(\beta)^{\mathrm{k}}, \mathrm{k} \geq 1,$ તો આપેલ પૈકી ક્યૂ વિધાન સત્ય છે ?
સમીકરણ $x_1 + x_2 = 100$ ના પ્રાકૃતિક ઉકેલોની સંખ્યા મેળવો કે જેથી $x_1$ અને $x_2$ એ $5$ નો ગુણક ના હોય
જો $\alpha ,\beta,\gamma$ એ સમીકરણ $x^3 + 2x -5 = 0$ ના ઉકેલો હોય અને સમીકરણ $x^3 + bx^2 + cx + d = 0$ ના ઉકેલો $2 \alpha + 1, 2 \beta + 1, 2 \gamma + 1$ હોય તો $|b + c + d|$ ની કિમત મેળવો (જ્યાં $b,c,d$ નો સરવાળો અવિભાજય સંખ્યા છે )
જો સમીકરણ $x^4 - 4x^3 + ax^2 + bx + 1 = 0$ ને ચાર વાસ્તવિક બીજ $\alpha,\beta,\gamma,\delta$ હોય તો, $a$ અને $b$ ની કિંમત ......હશે.
ધારોકે $\alpha, \beta$ એ સમીકરણ $x^2-\left(t^2-5 t+6\right) x+1=0, t \in \mathbb{R}$ નાં ભિન્ન બીજ છે અને $a_n=\alpha^n+\beta^n$. તો $\frac{a_{2023}+a_{2025}}{a_{2024}}$ નું ન્યૂનતમ મૂલ્ય .............છે.