Basic of Logarithms
hard

${2^{{{\log }_{\sqrt 2 }}(x - 1)}} > x + 5$ નું સમાધાન કરે તેવી $x$ ની વાસ્તવિક કિમતોનો ગણ મેળવો.

A

$( - \infty ,\, - 1) \cup (4, + \infty )$

B

$(4, + \infty )$

C

$( - 1,\,4)$

D

એકપણ નહી.

Solution

(b) ${2^{{{\log }_{\sqrt 2 }}(x – 1)}} > x + 5$$ \Rightarrow $${(\sqrt 2 )^{2{{\log }_2}(x – 1)}} > x + 5$

$ \Rightarrow $ ${(x – 1)^2} > x + 5$$ \Rightarrow $${x^2} – 3x – 4 > 0$

$ \Rightarrow $ $(x – 4)\,(x + 1) > 0$$ \Rightarrow $$x > 4$ or $x < – 1$

But for ${\log _{\sqrt 2 }}(x – 1)$ to be defined, $x – 1 > 0$ i.e., $x > 1$

$\therefore x > 4 \Rightarrow x \in (4,\,\infty )$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.