${2^{{{\log }_{\sqrt 2 }}(x - 1)}} > x + 5$ નું સમાધાન કરે તેવી $x$ ની વાસ્તવિક કિમતોનો ગણ મેળવો.
$( - \infty ,\, - 1) \cup (4, + \infty )$
$(4, + \infty )$
$( - 1,\,4)$
એકપણ નહી.
$log_{(4-x)}(x^2 -14x + 45)$ ના વ્યાખિયાતિત થવા માટેની બધી પ્રાકૃતિક સંખ્યાઓનો સરવાળો મેળવો.
${\log _{1/2}}({x^2} - 6x + 12) \ge - 2$ નું સમાધાન કરે તેવી $x$ ની વાસ્તવિક કિમતોનો ગણ મેળવો.
જો ${a^2} + 4{b^2} = 12ab $ તો $\log (a + 2b)= . . .$ .
$(0.16)^{\log _{2.5}\left(\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\ldots . to \infty\right)}$ ની કિમત શોધો
${\log _2}7$ એ . . . . થાય.