The set of real values of $x$ for which ${2^{{{\log }_{\sqrt 2 }}(x - 1)}} > x + 5$ is

  • A

    $( - \infty ,\, - 1) \cup (4, + \infty )$

  • B

    $(4, + \infty )$

  • C

    $( - 1,\,4)$

  • D

    None of these

Similar Questions

If ${\log _{12}}27 = a,$ then ${\log _6}16 = $

The interval of $x$ in which the inequality ${5^{(1/4)(\log _5^2x)}}\, \geqslant \,5{x^{(1/5)(\log _5^x)}}$

The number of real values of the parameter $k$ for which ${({\log _{16}}x)^2} - {\log _{16}}x + {\log _{16}}k = 0$ with real coefficients will have exactly one solution is

If ${\log _{10}}x + {\log _{10}}\,y = 2$ then the smallest possible value of $(x + y)$ is

If $x = {\log _a}(bc),y = {\log _b}(ca),z = {\log _c}(ab),$then which of the following is equal to $1$