The complete solution of the inequation ${x^2} - 4x < 12\,{\rm{ is}}$
$x < - \,2$ or $x > 6$
$ - \,6 < x < 2$
$2 < x < 6$
$ - \,2 < x < 6$
Let $\alpha ,\beta $ be the roots of ${x^2} + (3 - \lambda )x - \lambda = 0.$ The value of $\lambda $ for which ${\alpha ^2} + {\beta ^2}$ is minimum, is
If $(x + 1)$ is a factor of ${x^4} - (p - 3){x^3} - (3p - 5){x^2}$ $ + (2p - 7)x + 6$, then $p = $
The number of solutions for the equation ${x^2} - 5|x| + \,6 = 0$ is
If $\alpha ,\beta $ and $\gamma $ are the roots of ${x^3} + px + q = 0$, then the value of ${\alpha ^3} + {\beta ^3} + {\gamma ^3}$ is equal to
If $|{x^2} - x - 6| = x + 2$, then the values of $x$ are