The complete solution of the inequation ${x^2} - 4x < 12\,{\rm{ is}}$
$x < - \,2$ or $x > 6$
$ - \,6 < x < 2$
$2 < x < 6$
$ - \,2 < x < 6$
Number of rational roots of equation $x^{2016} -x^{2015} + x^{1008} + x^{1003} + 1 = 0,$ is equal to
The number of integers $k$ for which the equation $x^3-27 x+k=0$ has at least two distinct integer roots is
Consider the cubic equation $x^3+c x^2+b x+c=0$ where $a, b, c$ are real numbers. Which of the following statements is correct?
Let $a, b, c, d$ be real numbers between $-5$ and $5$ such that $|a|=\sqrt{4-\sqrt{5-a}},|b|=\sqrt{4+\sqrt{5-b}},|c|=\sqrt{4-\sqrt{5+c}}$ $|d|=\sqrt{4+\sqrt{5+d}}$ Then, the product $a b c d$ is
If $a \in R$ and the equation $ - 3{\left( {x - \left[ x \right]} \right)^2} + 2\left( {x - \left[ x \right]} \right) + {a^2} = 0$ (where $[x]$ denotes the greatest integer $\leq\,x$)has no integral solution ,then all possible values of $a$ lie in the interval