The complete solution of the inequation ${x^2} - 4x < 12\,{\rm{ is}}$
$x < - \,2$ or $x > 6$
$ - \,6 < x < 2$
$2 < x < 6$
$ - \,2 < x < 6$
If $72^x \cdot 48^y=6^{x y}$, where $x$ and $y$ are non-zero rational numbers, then $x+y$ equals
If $a+b+c=1, a b+b c+c a=2$ and $a b c=3$, then the value of $a^{4}+b^{4}+c^{4}$ is equal to $....$
The roots of the equation $4{x^4} - 24{x^3} + 57{x^2} + 18x - 45 = 0$, If one of them is $3 + i\sqrt 6 $, are
Number of rational roots of equation $x^{2016} -x^{2015} + x^{1008} + x^{1003} + 1 = 0,$ is equal to
Let $p_1(x)=x^3-2020 x^2+b_1 x+c_1$ and $p_2(x)=x^3-2021 x^2+b_2 x+c_2$ be polynomials having two common roots $\alpha$ and $\beta$. Suppose there exist polynomials $q_1(x)$ and $q_2(x)$ such that $p_1(x) q_1(x)+p_2(x) q_2(x)=x^2-3 x+2$. Then the correct identity is