The solution of equation ${\cos ^2}\theta + \sin \theta + 1 = 0$ lies in the interval

  • [IIT 1992]
  • A

    $\left( { - \frac{\pi }{4},\frac{\pi }{4}} \right)$

  • B

    $\left( {\frac{\pi }{4},\frac{{3\pi }}{4}} \right)$

  • C

    $\left( {\frac{{3\pi }}{4},\frac{{5\pi }}{4}} \right)$

  • D

    $\left( {\frac{{5\pi }}{4},\frac{{7\pi }}{4}} \right)$

Similar Questions

The equation $5x^2+12x + 13 = 0$ and $ax^2+bx + c = 0$ have a common root, where $a,b,c$ are the sides of $\Delta ABC$,then find $\angle C$ ? .....$^o$

If $\cos p\theta = \cos q\theta ,p \ne q$, then

Number of solutions of $\sqrt {\tan \theta }  = 2\sin \theta ,\theta  \in \left[ {0,2\pi } \right]$ is equal to 

If $\sin \theta  + 2\sin \phi  + 3\sin \psi  = 0$ and $\cos \theta  + 2\cos \phi  + 3\cos \psi  = 0$ , then the value of $\cos 3\theta  + 8\cos 3\phi  + 27\cos 3\psi  = $ 

The value of $\theta $ lying between $0$ and $\pi /2$ and satisfying the equation

$\left| {\,\begin{array}{*{20}{c}}{1 + {{\sin }^2}\theta }&{{{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{1 + {{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{{{\cos }^2}\theta }&{1 + 4\sin 4\theta }\end{array}\,} \right| = 0$

  • [IIT 1988]