સમીકરણ ${\cos ^2}\theta + \sin \theta + 1 = 0$ નો ઉકેલ . . . . અંતરાલમાં આવેલ છે.
$\left( { - \frac{\pi }{4},\frac{\pi }{4}} \right)$
$\left( {\frac{\pi }{4},\frac{{3\pi }}{4}} \right)$
$\left( {\frac{{3\pi }}{4},\frac{{5\pi }}{4}} \right)$
$\left( {\frac{{5\pi }}{4},\frac{{7\pi }}{4}} \right)$
જો $5{\cos ^2}\theta + 7{\sin ^2}\theta - 6 = 0$, તો $\theta $ ની વ્યાપક કિમત મેળવો.
સમીકરણ $\sin x + \sin y + \sin z = - 3\, , \,$$ 0 \le x \le 2\pi ,$ $0 \le y \le 2\pi ,$ $0 \le z \le 2\pi $ માટેના બીજની સંખ્યા . . . . છે.
સમીકરણ ${2^{\tan \,\,\left( {x\,\, - \,\,{\textstyle{\pi \over 4}}} \right)}}$ $- 2$${\left( {0.25} \right)^{\frac{{{{\sin }^2}\,\left( {x\,\, - \,\,{\textstyle{\pi \over 4}}} \right)}}{{\cos \,\,2x}}}}$ $+ 1 = 0$ નો ઉકેલગણ.......... છે
સમીકરણ $\sin x\cos x = 2$ ના બીજની સંખ્યા . . . . છે.
જો $2{\sin ^2}\theta = 3\cos \theta ,$ કે જ્યાં $0 \le \theta \le 2\pi $, તો $\theta = $