અંતરાલ $[0,\,\,2\pi ]$ માં સમીકરણ $(5 + 4\cos \theta )(2\cos \theta + 1) = 0$ નો ઉકેલગણ મેળવો.
$\left\{ {\frac{\pi }{3},\,\frac{{2\pi }}{3}} \right\}$
$\left\{ {\frac{\pi }{3},\,\pi } \right\}$
$\left\{ {\frac{{2\pi }}{3},\frac{{4\pi }}{3}} \right\}$
$\left\{ {\frac{{2\pi }}{3},\frac{{5\pi }}{3}} \right\}$
જો $2{\sin ^2}\theta = 3\cos \theta ,$ કે જ્યાં $0 \le \theta \le 2\pi $, તો $\theta = $
જો $sin^4\,\,\alpha + 4\,cos^4\,\,\beta + 2 = 4\sqrt 2\,\,sin\,\alpha \,cos\,\beta ;$ $\alpha \,,\,\beta \, \in \,[0,\pi ],$ તો $cos( \alpha + \beta)$ = ......
સમીકરણ $\sin \theta = - \frac{1}{2}$ અને $\tan \theta = \frac{1}{{\sqrt 3 }}$ નું સમાધાન કરે તેવા $\theta $ નો વ્યાપક ઉકેલ મેળવો.
સમીકરણ $\sqrt[3]{{\sin \theta - 1}} + \sqrt[3]{{\sin \theta }} + \sqrt[3]{{\sin \theta + 1}} = 0$ ના $[0,4\pi]$ માં ઉકેલોની સંખ્યા મેળવો.
જો $\sin \theta + 2\sin \phi + 3\sin \psi = 0$ અને $\cos \theta + 2\cos \phi + 3\cos \psi = 0$ ,હોય તો $\cos 3\theta + 8\cos 3\phi + 27\cos 3\psi = $