Argument and modulus of $\frac{{1 + i}}{{1 - i}}$ are respectively
$\frac{{ - \pi }}{2}$and $1$
$\frac{\pi }{2}$and $\sqrt 2 $
$0$ and $\sqrt 2 $
$\frac{\pi }{2}$and $1$
If $\alpha$ and $\beta$ are different complex numbers with $|\beta|=1,$ then find $\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|$
If $z$ is a complex number, then which of the following is not true
If for $z=\alpha+i \beta,|z+2|=z+4(1+i)$, then $\alpha+\beta$ and $\alpha \beta$ are the roots of the equation
If $|z - 25i| \le 15$, then $|\max .amp(z) - \min .amp(z)| = $
If $\frac{\pi }{2} < \alpha < \frac{3}{2}\pi $ , then the modulus and argument of $(1 + cos\, 2\alpha ) + i\, sin\, 2\alpha $ is respectively