2. Electric Potential and Capacitance
hard

સમાંતર પ્લેટ કેપેસીટરની પ્લેટ વચ્ચે ડાઈઇલેક્ટ્રિક મૂકવામાં આવે છે. જેનો ડાઈઇલેક્ટ્રિક અચળાંક નીચે મુજબ બદલાય છે.

$K(x) = K_0 + \lambda x$ ($\lambda  =$ અચળાંક)

શૂન્યાવકાશમાં કેપેસીટરનું મૂલ્ય $C_0$ હોય તો $C_0$ના સ્વરૂપમાં કેપેસીટન્સ $C$ કેટલું મળે?

A

$C\, = \,\frac{{\lambda d}}{{\ln \,(1 + {K_0}\lambda d)}}{C_0}$

B

$C\, = \,\frac{{\lambda }}{{d.\ln \,(1 + {K_0}\lambda d)}}{C_0}$

C

$C\, = \,\frac{{\lambda d}}{{\ln \,(1 + \lambda d/{K_0})}}{C_0}$

D

$C\, = \,\frac{\lambda }{{d.\ln \,(1 + {K_0}/\lambda d)}}{C_0}$

(JEE MAIN-2014)

Solution

The value of diclectric constant is given as

$\mathrm{K}=\mathrm{K}_{0}+\lambda \mathrm{x}$

And, $\mathrm{V}=\int_{0}^{\mathrm{d}} \mathrm{Edr}$

$\mathrm{v}=\int_{0}^{\mathrm{d}} \frac{\sigma}{\mathrm{K}} \mathrm{dx}$

${=\sigma \int_{0}^{d} \frac{1}{\left(K_{0}+\lambda x\right.} d x}$

${=\frac{\sigma}{\lambda}\left[\ln \left(K_{0}+\lambda d-\ln K_{0}\right]\right.}$

${=\frac{\sigma}{\lambda} \ln \left(1+\frac{\lambda d}{K_{0}}\right)}$

Now it is given that capacitance of vacuum $=1$

Thus, $C=\frac{Q}{V}$

$=\frac{\sigma . s}{v}$ (Let surface area of plates $=$ $s$)

$=\frac{\sigma}{\lambda} \ln \left(1+\frac{\lambda \mathrm{d}}{\mathrm{K}_{0}}\right)$

$ = \operatorname{s} \,\lambda \,\frac{d}{d}\frac{1}{{\ln \left( {1 + \frac{{\lambda d}}{{{K_0}}}} \right)}}\left( {\because {\text{ in vacuum }}{\varepsilon _0} = } \right.$

$c=\frac{\lambda d}{\ln \left(1+\frac{\lambda d}{K_{0}}\right)} \cdot C_{0}\left(\text { here, } C_{0}=\frac{s}{d}\right)$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.