The statement $(\mathrm{p} \wedge(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{r})) \rightarrow \mathrm{r}$ is :

  • [JEE MAIN 2021]
  • A

    a tautology

  • B

    equivalent to $\mathrm{p} \rightarrow \sim \mathrm{r}$

  • C

    a fallacy

  • D

    equivalent to $\mathrm{q} \rightarrow \sim \mathrm{r}$

Similar Questions

If $p : 5$ is not greater than $2$ and $q$ : Jaipur is capital of Rajasthan, are two statements. Then negation of statement $p \Rightarrow  q$ is the statement

The statement $[(p \wedge  q) \rightarrow p] \rightarrow (q \wedge  \sim q)$ is

If $p , q$ and $r$ are three propositions, then which of the following combination of truth values of $p , q$ and $r$ makes the logical expression $\{(p \vee q) \wedge((\sim p) \vee r)\} \rightarrow((\sim q) \vee r)$ false ?

  • [JEE MAIN 2023]

Let the operations $*, \odot \in\{\wedge, \vee\}$. If $( p * q ) \odot( p \odot \sim q )$ is a tautology, then the ordered pair $(*, \odot)$ is.

  • [JEE MAIN 2022]

The number of ordered triplets of the truth values of $p, q$ and $r$ such that the truth value of the statement $(p \vee q) \wedge(p \vee r) \Rightarrow(q \vee r)$ is True, is equal to

  • [JEE MAIN 2023]