सरल रेखा $x +2 y =1$ निर्देशांक अक्षों को $A$ तथा $B$ पर काटती है। मूल बिन्दु, $A$ तथा $B$ से होकर जाने वाला वृत्त खींचा गया है, तो मूल बिन्दु पर वृत्त की स्पर्श रेखा की $A$ तथा $B$ से लम्बवत् दूरियों का योग है
$\frac {\sqrt 5}{2}$
$2\sqrt 5$
$\frac {\sqrt 5}{4}$
$4\sqrt 5$
वृत्त ${x^2} + {y^2} = {a^2}$ पर रेखा $\sqrt 3 x + y + 3 = 0$ के समान्तर स्पर्श रेखाओं के समीकरण हैं
उस वृत्त का समीकरण, जो निर्देशांक्षों को एवं रेखा $\frac{x}{3} + \frac{y}{4} = 1$ को स्पर्श करता है एवं जिसका केन्द्र प्रथम चतुर्थांश में है, ${x^2} + {y^2} - 2cx - 2cy + {c^2} = 0$ है, तो $c$ का मान होगा
वृत्त ${x^2} + {y^2} - 2x - 6y + 9 = 0$ की स्पर्श रेखा $x = 0$, अर्थात् $y$-अक्ष पर किस बिन्दु पर होगी
यदि रेखा $x = k$ वृत्त ${x^2} + {y^2} = 9$ का स्पर्श करती हो, तो $k$ का मान है
वृत्त ${x^2} + {y^2} = {r^2}$ के बिन्दु $(a,b)$ पर स्पर्श रेखा का समीकरण $ax + by - \lambda = 0$ है, जहाँ $\lambda $ है