રેખા $x + 2y = 1$ એ યામાક્ષોને બિંદુ $A$ અને $B$ આગળ છેદે છે જો વર્તુળ બિંદુ $A, B$ અને ઉંગમબિંદુમાંથી પસાર થતું હોય તો બિંદુ $A$ અને $B$ થી વર્તુળના ઉંગમબિંદુ એ અંતરેલા સ્પર્શકના લંબઅંતરનો સરવાળો મેળવો.
$\frac {\sqrt 5}{2}$
$2\sqrt 5$
$\frac {\sqrt 5}{4}$
$4\sqrt 5$
$p$ ના કયા શક્ય મૂલ્ય માટે રેખા $x\ cos\ \alpha + y\ sin\ \alpha = p$ એ વર્તૂળે $x^2 + y^2 - 2qx\ cos\alpha - 2qy\ sin\ \alpha = 0$ નો સ્પર્શક હોય ?
બિંદુ $ (0, 1)$ માંથી વર્તૂળ $x^2 + y^2 - 2x + 4y = 0 $ પર દોરેલા સ્પર્શકોની જોડનું સમીકરણ . . . . . .
ધારો કે રેખાઓ $y+2 x=\sqrt{11}+7 \sqrt{7}$ અને $2 y + x =2 \sqrt{11}+6 \sqrt{7}$ એ વર્તુળ $C:(x-h)^{2}+(y-k)^{2}=r^{2}$. ના અભિલંબ છે જો રેખા $\sqrt{11} y -3 x =\frac{5 \sqrt{77}}{3}+11$ એ વર્તુળ $C$, નો સ્પર્શક હોય તો $(5 h-8 k)^{2}+5 r^{2}$ નું મૂલ્ય ...................છે
$\lambda$ ના કયા મુલ્ય માટે રેખા $3x - 4y = \lambda$ એ વર્તૂળ $x^2 + y^2 - 4x - 8y - 5 = 0$, ને સ્પર્શેં ?
જો બિંદુ $(p, q)$ માંથી વર્તૂળ $x^{2} + y^{2} = px + qy$ (જ્યાં $pq \neq 0$) પર દોરેલી બે ભિન્ન જીવાઓ $x-$અક્ષ દ્વારા દુભાગે છે તો ....